РУБРИКИ

Концепции современного естествознания

 РЕКОМЕНДУЕМ

Главная

Валютные отношения

Ветеринария

Военная кафедра

География

Геодезия

Геология

Астрономия и космонавтика

Банковское биржевое дело

Безопасность жизнедеятельности

Биология и естествознание

Бухгалтерский учет и аудит

Военное дело и гражд. оборона

Кибернетика

Коммуникации и связь

Косметология

Криминалистика

Макроэкономика экономическая

Маркетинг

Международные экономические и

Менеджмент

Микроэкономика экономика

ПОДПИСАТЬСЯ

Рассылка

ПОИСК

Концепции современного естествознания

p align="left">Основные понятия темы:

Вселенная - (1) весь существующий материальный мир, безграничный во времени и пространстве, и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития.

- (2) часть материального мира, которая доступна исследованию астрономическими средствами, соответствующими достигнутому уровню развития науки.

Мегамир - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов - миллионами и миллиардами лет.

Космогония - учение о происхождении и эволюции космических тел и их систем.

Космология - учение о Вселенной как целом, основанное на исследовании той ее части, которая доступна для астрономических наблюдений и других способов ее изучения.

Сингулярность - начальное сверхплотное состояние Вселенной.

Галактика - гигантские (до сотен миллиардов звезд) звездные системы.

Звезда - самосветящееся небесное тело, состоящее из раскаленных газов.

Протозвезда - обособившиеся из газопылевого облака в результате его гравитационной неустойчивости плотной конденсации вещества, в недрах которых еще не достигнуты температуры, необходимые для начала термоядерных реакций - основного источника энергии звезд.

Белые карлики - звезды, отличающиеся большой плотностью вещества, имеющие размеры и светимость, в сотни и тысячи раз меньшие, чем размеры и светимость Солнца, и вместе с тем высокую температуру.

Красный гигант - звезда высокой светимости, в сотни и тысячи раз превышающая размеры Солнца.

Сверхновая звезда - звезда, излучающая во время вспышки свет в сотни миллионов раз интенсивнее, чем Солнце.

«Черная дыра» - космический объект, обладающий гигантскими силами тяготения и ничего из себя не выпускающий.

Квазар - мощный источник космического радиоизлучения, представляет собой, скорее всего, исключительно активные ядра очень далеких галактик.

Пульсар - источник космического радиоизлучения с очень большой стабильностью периода.

Планета - массивное небесное тело шарообразной формы, которое движется вокруг Солнца и светит отраженным светом.

Астероид - малые планеты.

Реликтовое излучение - фоновое космическое излучение, спектр которого близок к спектру абсолютно черного тела с температурой около 3 К.

Световой год - единица для измерения расстояний во Вселенной, соответствует длине пути, который проходит свет за 1 год.

Тема 10. Пространство и время в современной научной картине мира

1. Развитие представлений о пространстве и времени в истории науки

Классическая концепция пространства и времени

Пространство и время - основные понятия физики, и в то же время универсалии культуры (выраженные в категориях философии), имеют длительную историю.

Впервые понятие пространства как пустоты появляется у Демокрита. Существуют атомы, и пустота необходима для их соединения и перемещения. Евклид в своем труде «Начала» придал строгую математическую форму пространственным характеристикам объектов. Зарождаются геометрические представления об однородном и бесконечном пространстве. Птолемей в своем труде «Альмагест» изложил свою геоцентрическую систему, которая господствовала в естествознании до XVI века. Это первая универсальная математическая модель мира, где время бесконечно, а пространство конечно, где происходит равномерное круговое движение небесных тел вокруг неподвижной Земли. Коперник в своей книге «Об обращении небесных сфер» изложил гелиоцентрическую систему, которая разрушила прежние представления и направила мысль к пониманию безграничности и бесконечности пространства. Джордано Бруно в труде «О бесконечности, Вселенной и мирах» связал воедино бесконечность Вселенной и пространства. Его выводы получили свое обоснование в небесной физике Кеплера и Галилея. В своем труде «Диалог о двух главнейших системах мира - птолемеевой и коперниковой» Галилей сформулировал два основных принципа механики: принципа инерции и принципа относительности. По существу эти принципы описывают свойства пространства Вселенной. Окончательную формулировку эти принципы получили в механике Ньютона. Согласно принципу относительности Галилея все физические явления происходят одинаково во всех инерциальных системах, т.е. таких, которые покоятся или двигаются равномерно и прямолинейно. Законы движения выражаются одной математической формой: уравнения движения при переходе от одной инерциальной системы к другой не изменяются, они инвариантны (неизменны) по отношению к преобразованиям координат.

Р. Декарт обосновал единство физики и геометрии, он пришел к отождествлению материальности и протяженности. Он ввел систему координат. Галилей и Декарт подготовили математическое и экспериментальное обоснование свойств пространства и времени в классической механике.

Ньютон в классической механике представляет новую гравитационную модель Вселенной. Она опирается на закон всемирного тяготения. Сила тяготения универсальна и проявляется между любыми материальными телами независимо от их конкретных свойств. «Математические начала натуральной философии» (1687) почти на 200 лет определили развитие естествознания. Он сформулировал понятия движения, пространства и времени:

Пространство является бесконечным, плоским, прямоугольным, эвклидовым, т.е. метрические свойства описываются геометрией Евклида. Пространство рассматривается как абсолютное, пустое, однородное, изотропное и является «вместилищем» материальных тел и не зависимой от них инерциальной системой.

Время - абсолютно, однородно, равномерно текущее, синхронно и однообразно во всей вселенной, и как чистая длительность, не зависимо от свойств материальных объектов.

Эта концепция пространства и времени получила название субстанциональной, в ней пространство и время рассматриваются как самостоятельные сущности.

В XVII в. выдающийся немецкий философ Г. Лейбниц предложил реляционную концепцию пространства и времени: пространство - порядок сосуществования объектов, время - последовательность их смены. Однако она не оказала влияния, т.к. была недостаточной для объяснения законов движения.

Поэтому почти двести лет господствовала субстанциональная (классическая) концепция пространства и времени.

Рассмотрим две инерциальные системы:

точка М неподвижна относительно первой системы координат и ее координаты (x, y, z). Вторая система координат движется относительно первой в направлении оси x со скоростью v. Уравнения Галилея для случая равномерного движения вдоль оси подвижной системы относительно неподвижной имели такой вид:

x = x - vt; y = y; z = z; t = t.

Пример: два наблюдателя, один из которых находится на перроне и не подвижен по отношению к другому. С точки зрения второго наблюдателя первый движется к концу поезда.

Уравнения называются преобразованиями Галилея. Следствием из них является правило сложения скоростей: скорость движения одного объекта относительно другого является суммой или разностью их скоростей по отношению к неподвижной системе координат.

Опыты по измерению скорости света относительно Земли, проводимые в 1881 г. Морли и Майкельсоном, привели к парадоксальному результату, - нарушалось правило сложения скоростей:

c + v = c - v = c.

Парадокс был разрешен А. Эйнштейном, который создал специальную теорию относительности (СТО). В 1905 г. он выступил с докладом «К электродинамике движущихся сред». Релятивистская физическая теория наряду с квантовой теорией легли в основу физики и всего естествознания ХХ в.

СТО базируется на двух постулатах:

Все законы природы одинаковы во всех инерциальных системах отсчета (принцип относительности).

Скорость света в вакууме постоянна и не зависит от движения источника и приемника света (принцип постоянства скорости света).

Скорость света - предельная скорость распространения материальных воздействий, по отношению к скорости света все движущиеся тела на Земле имеют скорость, равную нулю.

Эйнштейн использовал преобразования Х.А. Лоренца:

.

Выдающийся нидерландский физик Хендрик Антон Лоренц придумал их в 1904 г. для того, чтобы законы электромагнетизма (уравнения Максвелла) сохранили свой вид при переходе из одной инерциальной системы в другую (ведь явления электромагнетизма не зависят от того, с какой скоростью движется система отсчета). Преобразования Лоренца количественно выражают тот факт, что о времени и о пространстве (координатах) нельзя говорить как о независимых друг от друга понятиях.

Эйнштейн доказал, что в преобразованиях Лоренца отражаются не реальные изменения размеров тел при движении (это возможно только в абсолютном пространстве), а изменения результатов измерения в зависимости от движения системы отсчета. Относительными являются, не только движение, но и пространство и время.

В теории относительности в отличие от второго закона Ньютона, где масса считалась постоянной, масса зависит от скорости движения:

.

Движение тел невозможно со скоростями близкими к скорости света, т.к. масса при этом растет и приближается к бесконечности. Как шутят по этому поводу физики, можно стать миллионером, разогнав до космической скорости одну-единственную золотую монету. Только, во-первых, этот миллион уйдет на строительство ускорителя, а во-вторых, полученным богатством при таких скоростях трудно будет воспользоваться. Зависимость массы от скорости - это чисто релятивистский эффект. Как и другие релятивистские эффекты, он проявляется только при скоростях, соизмеримых со скоростью света. Его наблюдают, например, в ускорителях заряженных частиц.

Альберт Эйнштейн объединил своей СТО пространство и время в единый пространственно-временной континуум. Из этого следует, что положение любого тела определяют четыре параметра (x, y, z, t). Эта теория потребовала другой геометрии (неэвклидовой) и нашла выражение в 4-хмерном мире Германа Минковского. Положение любого объекта описывает мировая линия, которая находится внутри конуса, описываемого лучом света.

В 1908 году немецкий математик Г. Минковский, развивая идеи теории относительности, заявил: «Отныне пространство само по себе и время само по себе должны обратиться в фикции, и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность». Здесь имеются в виду два обстоятельства:

1) относительность промежутков времени и пространственных длин, их зависимость от выбора системы отсчета; 2) то, что пространство и время тесно связаны между собой (это главное). Они есть проявления некоторой единой сущности - четырехмерного пространства-времени. Вот этой их неразрывности и не знала прежняя физика. Что же представляет собой эта неразрывная связь?

Пространственные расстояния можно определять, измеряя время, за которое свет или вообще любые электромагнитные волны проходят измеряемое расстояние. Это так называемый метод радиолокации. Расстояние измеряется просто умножением постоянной скорости С на время прохождения электромагнитного сигнала. До теории Эйнштейна не знали, что скорость света постоянна, и никому бы и в голову не пришло так просто измерять расстояния.

Можно поступить и наоборот: измерять время световым сигналом, пробегающим известное расстояние. Если, например, заставить световой сигнал бегать, отражаясь между двумя зеркалами, отстоящими на три метра друг от друга, то каждый пробег будет длиться одну стомиллионную долю секунды. Сколько раз пробежал этот своеобразный световой маятник между зеркалами, столько стомиллионных долей секунды прошло.

Понять четырехмерный континуум не трудно, сложно наглядно представить себе четырехмерный мир. Очень просто нарисовать плоские геометрические фигуры на листе бумаги - они имеют длину и ширину. Гораздо труднее воображать трехмерные фигуры в пространстве - пирамиды, конусы, секущие их плоскости и т.д. Что касается воображения четырехмерных фигур, то иногда это очень трудно даже для специалистов, всю жизнь работающих с теорией относительности. Стивен Хокинг, например, известный английский физик-теоретик, крупнейший специалист в теории относительности так и говорит: «Невозможно вообразить четырехмерное пространство. Я сам с трудом представляю фигуры в трехмерном пространстве!». Но при этом специалисты с успехом используют понятие пространства-времени. Так в пространстве-времени можно линией изображать движение какого-либо тела. Если по горизонтальной оси (оси абсцисс) изобразить расстояние в пространстве по одному направлению, а по вертикальной (оси ординат) - отложить время. Для каждого момента времени отмечаем положение тела. Если тело покоится, то есть его расположение не меняется, то это на нашем графике изобразится вертикальной линией. Если тело движется с постоянной скоростью - мы получим наклонную прямую. При произвольных же движениях получается кривая линия. Такая линия получила название мировой линии. В общем случае надо вообразить, что тело может двигаться не только по одному направлению, но и по другим двум в пространстве тоже. Его мировая линия будет изображать движение тела в четырехмерном пространстве-времени.

Внешне это выглядит как «равноправие» пространства и времени, их значения просто отложены по разным осям координат. Но все же разница между ними существенная: в пространстве можно быть неподвижным, а во времени - нельзя. Мировая линия покоящегося тела изображается вертикально. Тело как бы увлекается потоком времени вверх, даже если оно не движется в пространстве. Мировая линия не может остановиться, оборваться в какой-то момент, ведь время не останавливается. Пока тело существует, непрерывно продолжается и его мировая линия.

Независимо от способности к наглядным представлениям физики-теоретики используют понятие о четырехмерном мире как рабочий инструмент для своих расчетов, оперируя мировыми линиями тел, вычисляя их длину, точки пересечения и так далее. Они развивают в этом четырехмерном мире четырехмерную геометрию, подобную геометрии Евклида. В честь Г. Минковского четырехмерный мир называют пространством-временем Минковского.

В то же время объяснительные и предсказательные функции СТО с точки зрения классических представлений выглядят явно парадоксально. Знаменитые парадоксы СТО:

парадокс одновременности: два события, происходящие одновременно в разных местах одной системы отсчета, не являются одновременными в другой системе отсчета.

х1 х2 , t1 = t2 , тогда t1 t2.

парадокс длины: длина l тела, измеренная в неподвижной системе отсчета, и длина l того же тела, измеренная в движущейся системе отсчета, не одинаковы и связаны соотношением: l= l 1-v2/c2

парадокс времени: время t протекания процесса в движущейся системе отсчета и время t протекания этого же процесса в неподвижной системе отсчета не одинаковы и связаны соотношением:t =t 1- v2/c2

А. Эйнштейна не покидало чувство незавершенности своей теории: как быть с наблюдателем, находящимся в системе отсчета, движущейся по отношению к другой с ускорением, т.е. в неинерциальной системе. Другая проблема возникла при попытке представить в рамках СТО тяготение.

Закон тяготения в том виде, как его сформулировал И.Ньютон, несовместим с теорией относительности. В самом деле, согласно утверждению Ньютона сила, с которой одно тело притягивает другое, обратно пропорциональна квадрату расстояния между ними. Поэтому, если притягивающее тело сдвинется, расстояние между телами изменится, и это мгновенно скажется на силе притяжения, влияющей на притягиваемое тело. Таким образом, по Ньютону, тяготение мгновенно передастся сквозь пространство. Но согласно теории относительности этого быть не может. Скорость передачи любой силы не может превышать скорость света, и тяготение не может передаваться мгновенно.

В 1915 году Эйнштейн завершил создание новой теории, объединяющей теории относительности и тяготения. Он назвал ее общей теорией относительности (ОТО). Теория тяготения Эйнштейна утверждает, что тяготеющие тела искривляют вокруг себя четырехмерное пространство-время. То, что четырехмерное пространство может быть искривленным, теоретически было открыто в начале прошлого века почти одновременно русским математиком Н.Лобачевским и венгерским математиком Я. Больяй. Немецкий математик Б.Риман стал рассматривать «искривленные» пространства не только с тремя измерениями, но и четырехмерные и вообще с любым числом измерений. С той поры геометрию искривленного пространства стали называть неевклидовой. Первооткрыватели неевклидовой геометрии не знали, в каких конкретно условиях может проявиться их геометрия, хотя отдельные догадки об этом высказывали. Созданный ими и их последователями математический аппарат был использован при формулировке общей теории относительности.

Итак, согласно основной идее А.Эйнштейна тяготеющие массы искривляют вокруг себя пространство-время. Пространство воздействует на материю, «указывая» ей, как двигаться. Материя, в свою очередь, оказывает обратное действие на пространство, «указывая» ему, как искривляться. В этом объяснении все необычно - и неподдающееся наглядному представлению искривленное четырехмерное пространство-время, и необычность объяснения силы тяготения геометрическими причинами. Физика здесь впервые напрямую связывается с геометрией. Знакомясь с успехами физики, чем ближе мы подходим к нашей эпохе, тем необычнее становятся ее открытия, а понятия все менее поддаются наглядным представлениям. Природа в ее нынешнем понимании настолько сложна, что требует от исследователя все больших усилий, в том числе и богатого воображения. После создания своей теории Эйнштейн указал на эффект замедления времени: в сильном поле тяготения время течет медленнее, чем вне его. Это означает, например, что любые часы у поверхности Солнца идут медленнее, чем на поверхности Земли, ибо тяготение Солнца больше, чем тяготение Земли. По аналогичной причине часы на некоторой высоте над поверхностью Земли идут чуть быстрее, чем на самой поверхности.

Итак, ОТО говорит о том, что свойства пространства и времени определяются движением материи, гравитационное поле искривляет пространство и меняет течение времени. В апреле 1921 г. А. Эйнштейн в интервью для американской газеты «Нью-Йорк Таймс» так пояснил суть своей теории относительности:

«… раньше считали, что если каким-нибудь чудом все материальные вещи исчезли бы вдруг, то пространство и время остались бы. Согласно же теории относительности вместе с вещами исчезли бы и пространство и время».

ОТО - теория, распространяющая принцип относительности на любые системы отсчета и представляющая из себя более общую теорию тяготения, содержит в себе теорию Ньютона как предельный случай. ОТО имеет экспериментальное подтверждение и является мощным аппаратом в ядерной физике и физике элементарных частиц. В частности, такими примерами могут служить полученные при наблюдении солнечного затмения в 1919 г. и 1921 г. факты искривления светового луча гравитационным полем, которые оказались близкими к расчетам, полученным на основании ОТО. А также открытие в 1929 г. Хабблом так называемого «красного смещения» свидетельствовало о том, что Вселенная не статична, а расширяется.

В космических масштабах геометрия пространства перестала быть евклидовой. Так, если в евклидовой геометрии предполагается, что сумма углов треугольника составляет 180о, то сумма углов треугольника, изображенного на поверхности сферы, больше 180о, а на седловидной поверхности - меньше 180о. Поверхность сферы в неевклидовой геометрии называется поверхностью положительной кривизны, а поверхность седла - отрицательной. При скоростях, близких к скорости света, при сильном тяготении пространство приходит в сингулярное состояние, сжимается в точку. Мегамир через это сжатие взаимодействует с микромиром и становится во многом аналогичным ему. Классическая механика справедлива как предельный случай лишь при скоростях, намного меньших световой, и при массах, намного меньших, чем в мегамире.

Таким образом, мы еще раз имеем случай убедиться в том, что в развитии науки было выработано интересное требование: всякая новая теория должна включать в себя старую (в уточненном виде) для тех условий, при которых она справедлива. Как говорил А. Эйнштейн, лучший жребий физической теории - послужить основой для более общей теории, оставаясь в ней предельным случаем.

3. Формы пространства и времени

Современная наука использует понятия физического, биологического, психологического и социального пространства и времени. Физическому пространству и времени приписываются следующие характеристики: всеобщность, т.к. эти формы присущи всем без исключения материальным объектам на любом уровне, пространство обладает также свойствами протяженности - наличие определенного местоположения, изотропности - равномерность всех возможных направлений, однородности - отсутствие каких-либо выделенных точек, трехмерности; времени приписываются свойства длительности - продолжительности существования любого материального объекта, одномерности - положение объекта во времени описывается единственной величиной, необратимости - однонаправленность от прошлого к будущему, однородности - отсутствие каких-либо выделенных фрагментов.

Биологическое пространство-время характеризует особенности существования органической материи, для него характерны свойства асимметрии правого и левого; главными характеристиками биологического времени является цикличность (ритмичность), неравномерность - собственное время живых организмов характеризуется разным темпом, имеет индивидуальную меру, может убыстряться или замедляться в зависимости от состояния организма, периода его жизни и т.п. Для человека характерно также психологическое время, которое, как и биологическое, обладает неравномерностью, зависящей от состояния человека и происходящих вокруг него событий, темп и плотность психологического времени напрямую связаны с возрастом человека.

Социальное пространство-время не существует вне практической деятельности человека, это освоенные человеком сферы, наделенные особым культурным смыслом.

Основные понятия темы:

Пространство - философская категория для обозначения протяженности, порядка сосуществования и структурированности материальных объектов.

Время - философская категория для обозначения длительности, последовательности смены состояний, интенсивности, темпа и ритма существования материальных объектов.

Движение - любое изменение и взаимодействие вообще.

Инерциальная система - система, которая покоится или движется равномерно и прямолинейно. Уравнения движения при переходе от одной инерциальной системы к другой инвариантны (неизменны) по отношению к преобразованиям координат.

Неинерциальная система - система, которая движется с ускорением или замедлением.

Принцип относительности - все законы природы одинаковы во всех инерциальных системах отсчета.

Пространственно-временной континуум - неразрывная связь пространства и времени и их зависимость от системы отсчета.

Тема 11. Основные концепции химии

1. Химия как наука, ее предмет и проблемы

Важнейшим разделом современного естествознания является химия. Она играет большую роль в решении наиболее актуальных и перспективных проблем современного общества. К их числу относят:

· Синтез новых веществ и композиций, необходимых для решения технических задач будущего;

· Увеличение эффективности искусственных удобрений для повышения уровня урожайности сельскохозяйственной продукции;

· Синтез продуктов питания из несельскохозяйственного сырья;

· Разработку и создание новых источников энергии;

· Охрану окружающей среды;

· Выяснение механизма важнейших биохимических процессов и их реализация в искусственных условиях;

· Освоение огромных океанических источников сырья.

Все химические знания, приобретаемые за многие столетия и представленные в форме теорий, законов, методов, технологических прописей и т.д. объединяет одна-единственная непреходящая, - главная задача химии - задача получения веществ с необходимыми свойствами.

Существует множество определений химии. Ее называют, во-первых, наукой о химических элементах и их соединениях; во-вторых, наукой о веществах и их превращениях; в-третьих, наукой о процессах качественного превращения веществ. Они слишком кратки и не дают полного ответа. Определяя химию как науку, следует иметь в виду два обстоятельства: во-первых, химия - не просто сумма знаний о веществах, а высоко упорядоченная, постоянно развивающаяся система знаний, имеющих определенное социальное назначение. Во-вторых, специфика химии в том, что в отличие от других наук химия сама создает свой предмет исследования. Как никакая другая наука, она является одновременно и наукой, и производством. Химия всегда была нужна человеку в основном для того, чтобы получать из вещества природы вещества с необходимыми заданными свойствами. Это - производственная задача и, чтобы ее реализовать, надо уметь производить качественные превращения вещества. Другими словами, чтобы решить производственную задачу, химия должна решить теоретическую задачу генезиса (происхождения) свойств вещества. Таким образом, основанием химии является двуединая проблема: получение веществ с заранее заданными свойствами (производственная задача) и выявление способов управления свойствами вещества (научно - исследовательская деятельность). Это и есть основная проблема химии - она возникает в древности и не теряет своего значения в наше время, конечно, способы ее решения меняются в зависимости от эпох, развития материального производства и познания.

Истоки химических знаний лежат в глубокой древности. Химические превращения использовались людьми еще в те времена, о которых не сохранилось письменных памятников. Эти химические «средства труда» (и, прежде всего, реакция горения) имели очень большое значение. При их помощи были заложены основы развития почти всех областей производства веществ, необходимых для прогресса человеческого общества. Огонь, очаг, печь, гончарное ремесло, металлургия, изготовление стекла, обработка кожи, приготовление продуктов брожения, красок, лекарств, средств косметики - все это основные ступени совершенствования и усложнения использованных человеком средств труда. Без расцвета разнообразных химических ремесел вряд ли было бы возможно появление высокоразвитых цивилизаций древних государств - Китая, Индии, Египта, Греции и Рима - с их товарообменом, письменностью и замечательной культурой. В древности наивысший уровень химических знаний совпал с расцветом Римской империи.

Исключительное значение для развития химии имело атомно-молекулярное учение, колыбелью которого является Древняя Греция. Атомистика древнегреческих материалистов отделена от нас 25-вековым периодом, однако философское учение о дискретном строении материи, развитое ими, невольно сливается в сознании с нашими сегодняшними представлениями.

Как же зародилась атомистика?

Основным научным методом древнегреческих философов являлись дискуссия, спор. Для поиска «первопричин» в спорах обсуждались многие логические задачи, одной из которых являлась задача о камне: что произойдет, если начать его дробить? Большинство философов считало, что этот процесс можно продолжать бесконечно. И только Левкипп и его последователи утверждали, что этот процесс не бесконечен: при дроблении, в конце концов, получится такая частица, дальнейшее деление которой просто будет невозможно. Основываясь на этой концепции, Левкипп утверждал: материальный мир дискретен, он состоит из мельчайших частиц и пустоты.

Ученик Левкиппа Демокрит назвал эти мельчайшие частицы «неделимые», что по-гречески значит «атомы». Это название мы используем и сегодня. Демокрит, развивая новое учение - атомистику, приписал атомам такие «современные» свойства, как размер и форму, способность к движению. Последователь Демокрита Эпикур придал древнегреческой атомистике завершенность, предположив, что у атомов существует внутренний источник движения, и они сами способны взаимодействовать друг с другом.

Все положения древнегреческой атомистики выглядят удивительно современно, и нам они, естественно, понятны. Ведь любой из нас, ссылаясь на опыт науки, может описать множество интересных экспериментов, подтверждающих справедливость любой из выдвинутых концепций. Но совершенно непонятны они были 20-25 веков назад, поскольку никаких экспериментальных доказательств, подтверждающих справедливость своих идей, древнегреческие атомисты представить не могли.

Итак, хотя атомистика древних греков и выглядит удивительно современно, ни одно из ее положений в то время не было доказано. Следовательно, атомистика, развитая Левкиппом, Демокритом и Эпикуром была и остается просто догадкой, смелым предположением, философской концепцией, не подкрепленной практикой. Это привело к тому, что одна из гениальных догадок человеческого разума постепенно была предана забвению.

Об учении атомистов не вспоминали почти 20 веков. И лишь в XVII веке идеи древнегреческих атомистов были возрождены благодаря работам французского философа Пьера Гассенди (1592 - 1655 г.г.). Почти 20 лет он потратил, чтобы восстановить и собрать воедино забытые концепции древнегреческих философов, которые он подробно изложил в своих трудах «О жизни, нравах и учении Эпикура» и «Свод философии Эпикура». Эти две книги, в которых воззрения древнегреческих материалистов впервые были изложены систематически, стали учебником для европейских ученых и философов. До этого единственным источником, дававшим информацию о воззрениях Демокрита и Эпикура, была поэма Лукреция «О природе вещей».

История науки знает немало удивительных совпадений. Вот одно из них: возрождение древнегреческой атомистики совпадает по времени с открытием Р. Бойлем (1627 - 1691 г.г.) фундаментальной закономерности, описывающей изменения объема газа от его давления. Качественное объяснение фактов, наблюдаемых Р. Бойлем, может дать только атомистика: если газ имеет дискретное строение, т.е. состоит из атомов и пустоты, то легкость его сжатия обусловлена сближением атомов в результате уменьшения свободного пространства между ними.

Первая робкая попытка применения атомистики для объяснения количественно наблюдаемых явлений природы позволила сделать два очень важных вывода:

· Превращение атомистики из философской гипотезы в научную концепцию позволило бы дать единственно правильную трактовку самым разнообразным явлениям природы.

· Для превращения атомистики из философской гипотезы в научную концепцию, доказательства существования атомов необходимо было изучать газы, а не жидкие и не твердые вещества, чем до этого занимались химики.

Только в XVIII веке ученые вплотную занялись исследованием газов. Последовал каскад открытий простых веществ: водород, азот, кислород, хлор. А несколько позже химики установили те законы, которые принято называть основными законами химии.

Закон сохранения массы сформулирован М.В. Ломоносовым в 1748 году и А. Лавуазье в 1777 году. Он гласит: масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

В 1801 году Ж. Пруст установил закон постоянства состава, согласно которому каждое химически чистое соединение независимо от способа его получения имеет вполне определенный состав.

Закон эквивалентов был сформулирован В. Рихтером в 1794 году. Он гласит: во всех химических реакциях взаимодействие различных веществ друг с другом происходит в соответствии с их эквивалентами, независимо от того, являются ли эти вещества простыми или сложными.

В 1803 году Д. Дальтон открыл закон кратких отношений, который представляет собой дальнейшее развитие закона эквивалентов, основанное на последовательном анализе ряда химических соединений, образующихся при взаимодействии друг с другом любых химических элементов. Вот его формулировка: если два элемента образуют друг с другом несколько химических соединений, то на одну и ту же массу одного из них приходятся такие массы другого, которые соотносятся между собой как простые целые числа.

Используя открытый им закон кратных отношений, закон эквивалентов и закон постоянства состава, Д. Дальтон создал новую версию атомистической теории. В ней атом из отвлеченной модели превратился в конкретное химическое понятие.

В серьезном противоречии с выводами атомистики Д. Дальтона оказался открытый Ж. Гей-Люссаком (в 1805 г.) закон объемных отношений, согласно которому объемы вступающих в реакцию газов относятся друг к другу, а также к объему получающихся газообразных продуктов как простые целые числа. Для объяснения наблюдавшихся закономерностей соединения газов оказалось необходимым предположить, что любые газы, в том числе и простые, состоят не из атомов, а молекул. В равных объемах различных газов при одинаковой температуре и давлении содержится одинаковое число молекул. Это положение, высказанное в 1811 году А. Авогадро, вошло в химию как закон Авогадро. Однако в начале XIX века он не получили должного признания: даже крупные химики того времени отрицали возможность существования молекул, состоящих из нескольких одинаковых атомов. И только спустя полвека в сентябре 1860 года на I Международном съезде химиков в Германии, в г. Карлсруэ были окончательно приняты основные положения атомно-молекулярного учения:

· Все вещества состоят из атомов.

· Атомы каждого вида (элемента) одинаковы между собой, но отличаются от атомов другого вида (элемента).

· При взаимодействии атомов образуются молекулы: гомоядерные (при взаимодействии атомов одного элемента) или гетероядерные (при взаимодействии атомов разных элементов).

· При физических явлениях молекулы сохраняются, а при химических - разрушаются. При химических реакциях атомы в отличие от молекул сохраняются.

· Химические реакции заключаются в образовании новых веществ из тех же самых, из которых состоят первоначальные вещества.

Дальнейшее развитие атомно-молекулярного учения стало возможным благодаря открытию Д.И. Менделеева в 1869 году периодического закона химических элементов и создания его табличного выражения - периодической системы. Оказалось, что периодичность изменения свойств химических элементов и их соединений, связаны с повторяющейся структурой электронных оболочек их атомов.

На рубеже XIX - XX веков в химии начали прослеживаться кризисные тенденции, поскольку подверглась сомнению истинность сложившейся атомно-молекулярной концепции, т.к. она не могла объяснить некоторые экспериментальные данные, полученные к концу XIX века. Открытие электрона, радиоактивность, по мнению многих химиков, разрушили основы объективного анализа химических процессов. Однако дальнейшее исследование сложного строения атома прояснило причину связи атомов друг с другом. Это - химическая связь, указывающая на действие электростатических сил между атомами. Это силы взаимодействия электрических зарядов, а их носители - электроны и ядра атомов. В образовании химической связи между атомами наиболее важны валентные электроны, которые расположены на внешней оболочке и связаны с ядром менее прочно. Различаются три основных типа химической связи: ковалентная, ионная и металлическая.

Химическая связь - это взаимодействие, связывающее отдельные атомы в молекулы, ионы, кристаллы. Они являются теми структурными уровнями организации материи, которые изучает химия. Энергия связи является важнейшей характеристикой химической связи, определяющей ее прочность. Количественно она оценивается при помощи энергии, которая затрачивается на ее разрыв. Вопрос об энергетике различных химических процессов, о степени превращения веществ в химических реакциях связан с применением в химии законов термодинамики. Химическая кинетика выявляет механизм реакции, качественные и количественные изменения химических процессов. Стало очевидным, что химическая картина мира оказалась много сложнее, чем это представлялось в XIX веке. Позиции атомно-молекулярной теории продолжали усиливаться в XX веке.

Таковы общие представления о предмете химии как науки и о круге ее проблем.

2. Основные этапы (концепции) развития химии

Химия должна ответить на вопрос, от чего зависят свойства вещества. Исторически сформировались четыре способа решения этого вопроса. Свойства вещества зависят

1) от его элементного и молекулярного состава (1660 гг.)

2) от структуры его молекул - структурная химия (1880 гг.)

3) от термодинамических и кинетических условий, в которых вещество находится в процессе химической реакции (1950 гг.)

4) от уровня химической организации вещества - эволюционная химия(1970 гг.).

До середины XVII века не был известен ни один химический элемент. Во второй половине ХVII в. в работах английского ученого Р. Бойля было доказано, что качества и свойства тела зависят от того, из каких материальных элементов тело составлено. С этого момента стали считать, что наименьшей частицей простого тела является молекула. После открытия ряда элементов первую попытку их классификации сделал Лавуазье, эта работа была успешно завершена в 1867 г. Д.И. Менделеевым.

В 1860 г. А.М. Бутлеровым была создана химическая теория строения вещества, которая положила начало структурной химии. Стало ясно, что свойства веществ и их качественное разнообразие обусловлены не только составом, но и структурой молекул. Появилось понятие «реакционная способность», в него включались представления о химической активности отдельных элементов молекулы - атомов, атомных групп и даже отдельных химических связей. В 1860-е годы появляется термин «органический синтез». Химия превратилась из науки главным образом аналитической в синтетическую. Этот период связан с развитием производства анилиновых красителей для текстильной промышленности, искусственного шелка, взрывчатых веществ, различных лекарств и др. Но этот этап был не долгим. Интенсивное развитие автомобилестроения, авиации, энергетики, приборостроения в первой половине ХХ в. выдвинули новые требования к производству материалов. Необходимо было получать высокооктановое моторное топливо, специальные синтетические каучуки, пластмассы, изоляторы, жаропрочные органические и неорганические полимеры, полупроводники. Для получения этих материалов имеющихся знаний было не достаточно. Нужно было исследовать изменения свойств веществ в результате влияния температуры, давления, растворителей и многих других факторов, воздействующих на направление и скорость химических процессов.

Химия становится наукой о процессах и механизмах изменения вещества. Она обеспечивает производство синтетических материалов, заменяющих дерево и металл в строительстве, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов. Многие материалы стали производиться из нефтяного сырья, а производство азотных удобрений - из азота и воздуха. Появились новые технологии.

В 60-70-е годы ХХ в. возник четвертый способ решения главного вопроса химии. Он открыл путь использования в производстве материалов самые высокоорганизованные химические системы, которые возможны в настоящее время. В основе этого способа лежит принцип использования таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем. (Это своеобразная биологизация химии). Возникает эволюционная химия. Ее считают предбиологией, т.е. наукой о самоорганизации и саморазвитии химических систем. Химия связывается с биологией. Долгое время эти две науки шли каждая своим путем, параллельно, чему способствовали представления о непроходимой грани между живым и неживым. Лишь открытие в ХХ в. микромира позволило увидеть практические возможности совместной работы над химическими проблемами учения о клетке; обусловленности биологических функций химическими реакциями. В то же время стало совершенно ясно, что нельзя сводить явления жизни к химическим реакциям (антиредукционизм). Специфика химических процессов в живых системах состоит в самосохранении, самовоспроизведении живой системы. В 60-е годы ХХ в. были открыты случаи самосовершенствования катализаторов в ходе реакции. Обычно они дезактивировались в процессе работы, ухудшались и выбрасывались. Исследования в области биокатализаторов ориентировались на естественный отбор каталитических структур, осуществляемый природой на пути эволюции от неорганической материи к органической. Результатом явилась информация об отборе химических элементов и структур, который оказался подобен биологической эволюции. Ныне известно более ста химических элементов. Большинство из них участвуют в жизнедеятельности организмов. Однако основу живых систем составляют только 6 элементов, получивших название органогенов: углерод, водород, кислород, азот, фосфор, сера. Общая весовая доля их в организме более 97%. За ними следуют 11 элементов, которые принимают участие в построении многих физиологически важных компонентов биосистем: натрий, калий, кальций, магний, железо, кремний, алюминий, хлор, медь, цинк, кобальт. Их весовая доля в организме - 1,6 %.

3. Химические системы и процессы

Интенсивное развитие химии в XX веке, характеризующееся разработкой принципиально новых научных направлений и технологических процессов, синтезом ранее неизвестных типов химических соединений, новыми условиями осуществления химических реакций (в плазме, твердой фазе, неводных и смешанных растворителей), способствовало пересмотру и систематизации фундаментальных химических представлений с позиции современного естествознания.

Значительно обогатились знания об уровнях химической организации материи. Низшим исходным уровнем химической организации материи является атом. Атом - система взаимодействующих элементарных частиц, состоящая из ядра (образованного протонами и нейтронами) и электронов. Атомы образуются при взаимодействии только трех типов элементарных частиц, но при этом возникает большой набор самых разнообразных устойчивых (или неустойчивых) систем. Весь образовавшийся ансамбль подразделяется на совокупность, в каждую из которых входят только атомы, характеризующиеся одним и тем же зарядом ядра. Эти совокупности называются химическими элементами.

Следующим, более высоким уровнем химической организации материи после атома, является молекула. Молекула - нейтральная по заряду наименьшая совокупность атомов, связанных, вследствие химического взаимодействия, в определенном порядке (т.е. обладающая определенной структурой), не имеющая, как правило, не спаренных электронов и способная к самостоятельному существованию. Молекулы могут состоять как из атомов одного и того же элемента - гомоатомные или гомоядерные, так и из атомов различных элементов - гетероатомные или гетероядерные.

Дальнейшее усложнение химической организации материи происходит при взаимодействии атомных и молекулярных частиц, ведущем к образованию более сложных совокупностей - молекулярных ассоциаций и агрегатов. Важно отметить, что ассоциаты существуют главным образом в газообразном или жидком состояниях, а агрегаты - в твердом.

В XX веке продолжает уточняться периодический закон химических элементов. В настоящее время он формулируется следующим образом: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядра их атомов.

Продолжает развиваться и периодическая система. Была упразднена введенная Д.И. Менделеевым нулевая группа. Изучение химических свойств благородных газов, показало, что они являются элементами главной подгруппы VIII группы периодической системы.

Понятие вещества как вида материи, характеризующегося массой покоя, перестало удовлетворять современных химиков. Сейчас вещество, с точки зрения химии, это определенная совокупность атомных и молекулярных частиц, их ассоциатов и агрегатов, находящихся в любом из трех агрегатных состояний. Простые вещества - это вещества, состоящие из атомов одного и того же элемента, а сложные вещества образуются при химическом взаимодействии атомов разных химических элементов. Природа сложных веществ - химических соединений - зависит от химической связи. Широта понятия химической связи не позволяет дать его четкого определения. Можно ограничиться следующим: под химической связью понимается такой вид взаимодействия между атомно-молекулярными частицами, который обусловлен совместным использованием их электронов. При этом имеется в виду, что такое обобществление электронов взаимодействующими частицами может изменяться в широких пределах.

Важной количественной характеристикой, показывающей число взаимодействующих между собой атомов в образовавшейся молекуле, является валентность. Это понятие возникло в химии более 100 лет. Им обозначили свойство атомов одного элемента присоединять определенное число атомов других элементов. Современные представления о строении атома связывают валентность с числом неспаренных элементов, благодаря которым осуществляется связь между атомами.

Современная теория химической связи дает удовлетворительные ответы на следующие вопросы:

Почему и каким образом из свободных атомов образуются молекулы?

Почему атомы соединяются друг с другом в определенных соотношениях?

Каковы эти соотношения для различных химических элементов?

Какова геометрическая форма молекул и как она связана с электронной структурой составляющих ее атомов?

Связь атомов посредством электронных пар называют ковалентной связью. Разновидность ковалентной связи, образованной атомами, называют неполярной, а образованной двумя разными атомами - полярной или поляризованной.

Ионной называют химическую связь между ионами - заряженными частицами, в которые превращаются атомы в результате отдачи или присоединения электронов. Вещества, образованные из ионов, называются ионными соединениями.

Металлическая связь проявляется при взаимодействии атомов элементов, имеющих избыток свободных валентных орбиталей по отношению к числу валентных электронов.

Водородная связь обусловлена дополнительным взаимодействием между ковалентно связанным атомам водорода одной молекулы и электроотрицательным атомом той же самой или другой молекулы.

Учение о химических связях составляют основу современной теории химического строения. Согласно ей, химическое строение - это не только порядок элементарной связи атомов и их взаимное влияние в веществе, но и направление, и прочность связей, межатомные расстояния, распределение плотности электронного облака, эффективные заряды атомов и т.п.

В XX веке химия все более становилась наукой уже не только и не столько о веществах как законченных предметах, сколько наукой о процессах и механизмах изменения веществ. Химические процессы представляют собой сложнейшие явления, как в неживой, так и в живой природе. Они протекают в форме взаимодействия двух или нескольких веществ, приводящего к образованию новых веществ. Склонность вещества вступать в те или иные химические взаимодействия называется его реакционной способностью, о которой судят по числу и разнообразию характерных для данного вещества превращений. Суть этой способности можно понять с точки зрения активности химических элементов. Наиболее активными являются неметаллы с минимальной атомной массой и имеющие во внешней оболочке 6 или 7 электронов. В качестве примера можно привести кислород: ведь в нем горит даже железо. Что касается металлов, то наиболее активными из них являются элементы, принадлежащие I и II группам таблицы Менделеева, имеющие на внешнем уровне соответственно 1 и 2 валентных электрона и большую атомную массу. Например, барий легко разлагает воду даже при комнатной температуре, а соприкосновение цезия с водой очень часто приводит к взрыву. В то же время элементы с полностью укомплектованной оболочкой являются неактивными (например, инертные газы: неон, аргон, криптон, ксенон).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


© 2008
Полное или частичном использовании материалов
запрещено.