РУБРИКИ

Концепции современного естествознания

 РЕКОМЕНДУЕМ

Главная

Валютные отношения

Ветеринария

Военная кафедра

География

Геодезия

Геология

Астрономия и космонавтика

Банковское биржевое дело

Безопасность жизнедеятельности

Биология и естествознание

Бухгалтерский учет и аудит

Военное дело и гражд. оборона

Кибернетика

Коммуникации и связь

Косметология

Криминалистика

Макроэкономика экономическая

Маркетинг

Международные экономические и

Менеджмент

Микроэкономика экономика

ПОДПИСАТЬСЯ

Рассылка

ПОИСК

Концепции современного естествознания

p align="left"> 1. Метод единственного сходства: если какое-то обстоятельство постоянно предшествует наступлению исследуемого явления в то время, как иные обстоятельства изменяются, то это условие, вероятно, и есть причина данного явления.

2. Метод единственного различия: если какое-то условие имеет место, когда наступает исследуемое явление, и отсутствует, когда этого явления нет, а все остальные условия остаются неизменными, то, вероятно, данное условие представляет собой причину исследуемого явления.

3. Соединенный метод сходства и различия: если два и большее число случаев, когда наступает данное явление, сходны только в одном условии, в то время как два или более случаев, когда данное явление отсутствует, отличаются от первых только тем, что отсутствует это условие, то это условие, вероятно, и есть причина наблюдаемого явления.

4. Метод сопутствующих изменений: если с изменением условий в той же степени меняется некоторое явление, а остальные обстоятельства остаются неизменными, то, вероятно, данное условие является причиной наблюдаемого явления.

5. Метод остатков: если сложные условия производят сложное действие и известно, что часть условий вызывает определенную часть этого действия, то остающаяся часть условий вызывает остающуюся часть действия.

Дедукция - это движение мысли от общих положений к частным или единичным. Дедукция - общенаучный метод, но особенно большое значение дедуктивный метод имеет в математике. В науке Нового времени разрабатывал и пропагандировал дедуктивно-аксиоматический метод познания выдающийся философ и математик Р. Декарт. Его методология была прямой противоположностью эмпирическому индуктивизму Бэкона.

Из общего положения, что все металлы обладают электропроводностью, можно сделать вывод об электропроводности конкретной медной проволоки, зная, что медь - металл. Если исходные общие положения являются истинными, то дедукция всегда будет давать истинный вывод.

Наиболее распространенным видом дедукции является простой категорический силлогизм, в котором устанавливается отношение между двумя крайними терминами S и P на основании их отношения к среднему термину M. Например:

Все металлы (M) проводят электрический ток (P).

Важное место в теории дедуктивных рассуждений занимает также условно-категорическое умозаключение.

Утверждающий модус (modus ponens):

Если у человека повышена температура (a), он болен (b). У этого человека повышена температура (a). Значит, он болен (b).

Как видно, мысль здесь движется от утверждения основания к утверждению следствия: (a --› b,a) --› b.

Отрицающий модус (modus tollens):

Если у человека повышена температура (a), он болен (b). Этот человек не болен (не-b). Значит, у него нет повышенной температуры (не-a).

Как видно, здесь мысль движется от отрицания следствия к отрицанию основания: (a --› b, не-b) --› не-a.

Дедуктивная логика играет важнейшую роль в обосновании научного знания, доказательстве теоретических положений.

Аналогия и моделирование. Оба эти метода основаны на выявлении сходства в предметах или отношениях между предметами. Модель - искусственно созданное человеком устройство, которое в определенном отношении воспроизводит реально существующие предметы, являющиеся объектом научного исследования. Моделирование основано на абстрагировании сходных признаков у разных предметов и установлении между определенного соотношения между ними. С помощью моделирования можно изучать такие свойства и отношения исследуемых явлений, которые могут быть недоступны непосредственному изучению.

В хорошо известной планетарной модели атома его строение уподобляется строению Солнечной системы. Вокруг массивного ядра на разном расстоянии от него движутся по замкнутым траекториям легкие электроны, подобно тому, как вокруг солнца обращаются планеты. В этой аналогии устанавливается, как и обычно, сходство, но не самих предметов, а отношений между ними. Атомное ядро не похоже на Солнце, а электроны - на планеты. Но отношение между ядром и электронами во многом подобно отношению между Солнцем и планетами.

Аналогия между живыми организмами и техническими устройствами лежит в основе бионики. Это направление кибернетики изучает структуры и жизнедеятельность организмов; открытые закономерности и обнаруженные свойства используются затем для решения инженерных задач и построения технических систем, приближающихся по своим характеристикам к живым системам.

Таким образом, аналогия не только позволяет объяснить многие явления и сделать неожиданные и важные открытия, она приводит даже к созданию новых научных направлений или коренному преобразованию старых.

Виды моделирования.

Мысленное (идеальное) моделирование - построение различных мысленных представлений в форме воображаемых моделей. Например, в идеальной модели электромагнитного поля, созданной Максвеллом, силовые линии представлялись в виде трубок различного сечения, по которым течет воображаемая жидкость, не обладающая инерцией и сжимаемостью.

Физическое моделирование - воспроизведение в модели процессов, свойственных оригиналу, на основе их физического подобия. Оно широко используется для разработки и экспериментального изучения различных сооружений (плотин электростанций и т.п.), машин (аэродинамические качества самолетов, например, исследуются на их моделях, обдуваемых воздушным потоком в аэродинамической трубе), для изучения эффективных и безопасных способов ведения горных работ и т.д.

Символическое (знаковое) моделирование связано с представлением в качестве моделей разнообразных схем, графиков, чертежей, формул. Особой разновидностью символического моделирования является математическое моделирование. Символический язык математики позволяет выражать свойства, стороны, отношения объектов самой различной природы. Взаимосвязи между различными величинами, описывающими функционирование изучаемого объекта, выражается соответствующими уравнениями.

Численное моделирование на ЭВМ основывается на математической модели изучаемого объекта и применяется в случаях больших объемов вычислений, необходимых для исследования данной модели, для чего создается специальная программа. В этом случае в качестве модели выступает алгоритм (программа для ЭВМ) функционирования изучаемого объекта.

3. Формы научного знания

Осваивая действительность самыми разнообразными методами, научное познание проходит разные этапы. Каждому из них соответствует определенная форма знаний. Основными из них являются факт, теория, проблема (задача), гипотеза, программа.

Факт. В обычном смысле слова «факт» (от лат. factum - сделанное, совершившееся) является синонимом слова «истина», «событие», «результат». Как логическая форма факт - суждение о единичном. Например, «Земля обращается вокруг Солнца», «Вода при 100С превращается в пар».

Большую роль в выработке и накоплении фактов в естествознании всегда играли наблюдения и эксперименты. Можно утверждать, что наука начинается с фактов. Каждая научная дисциплина проходит длительный период их накопления. Для естественных наук он охватывает ХV-ХVII века, значительную роль в формировании фактической базы естествознания сыграли великие географические открытия.

Теория является логически организованной системой научных знаний, которая дает целостное и всестороннее описание объекта.

Структура научной теории:

исходный эмпирический базис - факты наблюдений и данные экспериментов;

исходный теоретический базис - аксиомы, постулаты, допущения, законы и т.д.

логический аппарат - правила вывода и доказательства;

совокупность выведенных следствий с их доказательствами.

Функции теории: 1) объяснительная; 2) систематизирующая; 3) предсказательная; 4) методологическая.

1) Объяснить факт - значит, подвести его под эмпирический или теоретический закон, если теория носит завершенный характер. Подчинение факта теории носит дедуктивный характер и принимает форму силлогизма.

2) В процессе систематизации факт (в результате объяснения) включается в более широкий контекст знаний, тем самым происходит установление связей факта с другими фактами и, таким образом, факты приобретают определенную целостность.

3) Предсказание реализуется в способности теории к дальним и точным прогнозам. Предсказательная мощь теории зависит главным образом от двух факторов: во-первых, от глубины и полноты познания сущности явлений, во-вторых, теоретическое предсказание находится в обратной зависимости от сложности и нестабильности исследуемого процесса, и чем сложнее и неустойчивее этот процесс, тем рискованнее прогноз. К самым простым системам причисляют, как известно, системы, изучаемые небесной механикой. Даже простые первоначальные обобщения астрономических наблюдений, сделанные древними китайцами более 2000 лет до н. э., позволили им с большой точностью предсказывать солнечные затмения. Геоцентрическая система Птолемея была более мощной в своих предсказаниях и позволяла предвидеть также расположения планет на небосклоне, моменты равноденствий и др. Пользуясь ею, прокладывали пути своих каравелл Колумб, Васко де Гама, Америго Веспуччи. Однако она была беспомощна во многих предсказаниях, в частности, при определениях длительности года, и, в конце концов, привела к созданию гелиоцентрической системы Коперника, где многие трудности тогдашней астрономии были преодолены.

4) Методологическая функция означает, что теория выступает в качестве опоры и средства дальнейшего исследования. Наиболее эффективный научный метод есть истинная теория, направленная на практическое применение, на разрешение определенного множества задач и проблем. Квантовая теория, например, - не только объяснение процессов атомного масштаба, но и действенный метод дальнейшего познания микромира.

Задача и проблема. Под научной задачей понимают решаемый наукой вопрос, имеющий достаточно средств для своего разрешения. Если же их недостаточно, то он называется научной проблемой. В структуре задачи или проблемы выделяются: 1) неизвестное (искомое); 2) известное (условие или предпосылки задачи или проблемы).

Итак, проблема - это такой научный вопрос, на который нельзя ответить, пользуясь имеющимися в наличии знанием и средствами. Осознание такой ситуации, когда невозможно старыми средствами решить данную задачу, означает наличие проблемной ситуации. Она характеризуется:

1) фиксацией существующего пробела в имеющемся знании, противоречия между знанием и незнанием, известным и неизвестным, осознанием невозможности имеющимися средствами объяснить какие-то факты;

2) осознанием материала и средств, имеющихся в распоряжении исследователя для достижения поставленной цели. Лишь на определенной ступени развития общества приходит время для постановки тех или иных проблем. Каждая проблема - это дитя своего времени.

Противоречия между теорией и фактами - главный источник проблем и задач в науке. Наличие этого противоречия и есть проблемная ситуация. Проблема появляется в результате осознания потребности в разрешении противоречия. Конкретный анализ проблемных ситуаций показывает, что далеко не каждая проблема сразу же приобретает характер вопроса. Не всякое исследование начинается с выдвижения проблемы и кончается ее решением. Нередко бывает так, что проблема формулируется одновременно с ее решением. Иногда бывает даже, что она осознается полностью только через некоторое время после решения. Зачастую поиск проблемы сам вырастает в отдельную проблему, решение которой требует особого таланта. «Великая проблема, - писал Ф. Ницше, - подобна драгоценному камню: тысячи проходят мимо, пока, наконец, один не поднимет его».

Сложность процесса созревания и раскрытия проблем хорошо чувствуют сами ученые, постоянно сталкивающиеся с самыми разнообразными проблемами. Альберт Эйнштейн говорил о том, что сформулировать проблему часто важнее и труднее, чем решить ее.

Таким образом, в содержание проблемы входит знание о том, чего можно достичь при имеющихся в наличии предпосылках. В этом смысле проблема есть способ организации научного исследования. Она ориентирует исследование в определенном направлении и указывает на все возможные известные средства, которые необходимо применить для получения нового знания. Поскольку между знанием и незнанием существует некая связь, научная проблема в процессе исследования перерастает в гипотезу.

Гипотеза. В первоначальном значении термин «hypothese» означал недоказанное утверждение, принимаемое с целью доказательства. Отсюда легко делался вывод, что гипотеза опережает всякое доказательство, и значит, гипотеза есть создание ума, предоставленного самому себе. Поэтому знанию, претендующему на объективность, следует избегать гипотез. «Гипотез не измышляю!» - этими словами Ньютона можно выразить негативное отношение к гипотезе как источнику заблуждений, которое сложилось в бурно развивающемся естествознании Нового времени. Ученые XVI-XVIII вв., тем не менее, пользуются гипотезами, выдвигают их, тем самым, доказывая, что научное познание невозможно без гипотез. Дидро, Пристли, Ломоносов - первыми сделали решительный шаг по пути признания роли гипотез в научном исследовании. Теория и эксперимент связаны прочными узами: все в эксперименте делается для того, чтобы открыть какую-нибудь гипотезу, гипотеза, в свою очередь, ведет к новым экспериментам, которые дают новые факты, развивающие знание об объекте.

Гипотеза - это научное предположение, опирающееся на факты, выраженное в форме суждения, или системы взаимосвязанных суждений, о причине, механизме изучаемых явлений. По своей логической структуре гипотеза является вероятностным суждением, т.к. истинность ее не определенна. По своей познавательной функции гипотеза выступает либо как форма развивающегося знания от проблемы к теории, либо как структурный элемент теории. Гипотеза как процесс мышления складывается из двух последовательных этапов: 1) построение гипотезы; 2) обоснование ее логическими методами.

Построение гипотезы начинается с выдвижения предположения о возможной причине интересующего нас явления. Это сложный логический процесс, в котором используются различные методы: индукция, дедукция, аналогия, анализ, синтез. Мышление идет от анализа фактов к заключению о причинах явлений и, следовательно, к объяснению фактов. Опора на факты, их анализ - вот что отличает гипотезу от простой догадки, фантазии или вымысла. Для построения гипотезы, поэтому, следует оперировать как можно большим объемом фактического материала.

Гипотезы возникают не только для объяснения эмпирического материала, но и для разрешения противоречий, появляющихся на теоретическом уровне. Например: 200 лет в физике сосуществовали две теории света: корпускулярная (Ньютона) и волновая (Гюйгенса). Луи де Бройль в 20-е годы ХХ в. выдвинул гипотезу, что любая частица, независимо от ее движения, есть одновременно и волна, и корпускула. В результате этого два обособленных раздела физики - механика и волновая оптика - оказались взаимосвязаны.

Таким образом, гипотеза может возникать как путем индуктивного обобщения опытных данных, так и в результате интуиции и последующей дедукции.

Проверка (доказательство) гипотезы - необходимый этап на пути движения научного познания к достоверному знанию, и, чтобы стать достоверным, оно должно быть обосновано. В процессе проверки гипотеза либо принимается, т.е. входит в качестве элемента в научную теорию или же сама превращается в теорию, либо отвергается. Проверка гипотезы на ее состоятельность проходит последовательно два этапа: из данной гипотезы выводятся логические следствия, и затем проводится их эмпирическая проверка с целью установления соответствия следствий и данных опыта. Если соответствие установлено, то гипотезу можно применять в качестве научного предположения. Дополнительная достоверность гипотезы определяется тем, что следствия, выводимые из нее, предсказывают факты, существование которых подтверждается ходом исследований. В этом состоит эвристическая роль гипотезы. На основе квантово-релятивистской теории Поль Дирак предположил, что существует частица, сходная с электроном, но противоположная по заряду, и предвосхитил открытие позитрона. Состоятельность гипотезы проверяется и путем сопоставления ее следствий с теоретическими положениями, истинность которых доказана. Если нет противоречия, то можно говорить о ее достоверности.

Очень часто ученым приходится безвозвратно отказываться от гипотезы в связи с ее опровержением. Такая судьба, например, оказалась у гипотезы истечения Ньютона, в которой считалось, что скорость распространения света в стекле, воде и т.д. является более высокой, чем в воздухе, у гипотезы вечного двигателя в связи с открытием законов сохранения и др.

Обычно при анализе фактических данных выдвигается несколько гипотез, объясняющих данный класс явлений, - так называемые «конкурирующие гипотезы». В борьбе конкурирующих гипотез большую роль играют «решающие эксперименты». Они проводятся тогда, когда из этих гипотез удается вывести следствия, противоречащие друг другу, но которые можно сопоставить с данными эксперимента. Подтверждение следствий одной гипотезы будет свидетельствовать об опровержении следствий другой. Это значит, что и гипотеза, из которой получены такие следствия, также признается ложной. Гипотеза, альтернативная ей, хотя и не признается пока истинной, но приобретает большую вероятность.

Требования к гипотезе:

Гипотеза должна быть принципиально проверяемой, т.к. ее содержание должно быть сопоставимо с содержанием эмпирических данных.

Гипотеза должна быть обоснована не только эмпирически, но и теоретически (не противоречить установленным наукой законам).

Гипотеза не должна быть внутренне противоречивой.

Простота гипотезы. Из «конкурирующих» гипотез выбирается та, которая является наиболее простым объяснением. Сами ученые называют это требование «бритвой Оккама» по имени философа Уильяма Оккама. Смысл этого правила в том, что более простые объяснения природных явлений с большей вероятностью могут оказаться правильными, чем более сложные. Если мы располагаем двумя гипотезами, объясняющими одни и те же явления, то следует выбирать ту из них, которая включает наименьшее из возможных число допущений или сложных выкладок, отсекая (как бритвой) те, которые содержат избыточные принципы. «Бритва Оккама» оказалась исключительно полезным методологическим правилом, однако в современной науке его применяют с осторожностью, т.к. он не является верным в каждом конкретном случае.

Закон науки. Чаще всего научное познание связано с поиском универсальных общезначимых и достоверных законов, которые могут быть в любой момент экспериментально проверены. Научные дисциплины такого типа называют номологическими (от греч. nomos- закон). К ним относится большая часть научных дисциплин. Закон - устойчивая повторяющаяся связь явлений. Установление законов науки связано с обнаружением повторяемых и воспроизводимых феноменов. Законы науки играют роль важнейших принципов объяснения каких-либо фактов. Поэтому закон является главным структурным элементом научной теории. Противоречие фактов закону, как мы уже видели, означает проблемную ситуацию, разрешением которой является гипотеза. Например, проводившиеся в Х1Х в. наблюдения за движением планеты Уран показали, что оно противоречит предсказаниям, сделанным на основании законов Ньютона. Это влекло за собой предположение о ложности законов Ньютона. Однако вместо того, чтобы опровергать законы Ньютона, Леверье и Адамс выдвинули догадку о том, что вблизи Урана может находиться не обнаруженная до сих пор планета, которая и отвечает за аномальное движение Урана. Галле занялся поисками этой планеты. Так была открыта планета Нептун.

В зависимости от методологии законы науки делятся на эмпирические, полученные с помощью индуктивного обобщения, и теоретические, полученные путем идеализации.

Научная программа. Достижение научных целей невозможно без решения комплексов проблем и задач. Для обозначения этих комплексов в методологию научного познания было введено понятие «научная программа». Научная программа представляет собой систему целей, средств, ценностей. В рамках научной программы формулируются общие теоретические положения, задаются идеалы научного познания и организации научного знания, его оценки.

4. Принципы естествознания. Способы обоснования (модели) естественнонаучного знания

Принципы естествознания:

Формально-логические принципы: обоснованности, однозначности, непротиворечивости, полноты, которые выражаются в основных законах логики:

Закон тождества - в процессе рассуждения всякая мысль должна оставаться равной самой себе ( А=А)

Закон непротиворечия - никакое суждение и его отрицание не могут быть истинными в одно и то же время (неверно, что А и не-А)

Закон исключенного третьего - из двух противоречащих суждений только одно является истинным (либо А, либо не-А)

Закон достаточного основания - каждая мысль должна быть достаточно обоснованной.

А также принцип соответствия: должно быть соответствие между старой и новой теорией, в некотором пределе математический аппарат новой теории должен совпадать с математическим аппаратом старой теории.

Эмпирические принципы (верификация - соответствие фактам): согласованность теоретических утверждений с фактическим материалом, возможность их эмпирического подтверждения и опровержения. От научных положений требуется, чтобы они допускали принципиальную возможность опровержения (фальсификация) и предполагали определенные процедуры своего подтверждения. Если этого нет, то относительно какого-то положения нельзя сказать, какие ситуации и факты несовместимы с ним, а какие - поддерживают его. Например, в начале ХХ века биолог Г. Дриш попытался обосновать наличие у живых существ так называемой «жизненной силы», заставляющей их вести себя определенным образом. Эта сила, названная им «энтелехией», имеет различные виды в зависимости от стадии развития организма. В простейших организмах энтелехия сравнительно проста, у человека она значительно сложнее и отвечает за все, что происходит в его теле. Дриш не определял, чем энтелехия, например, дуба отличается от энтелехии бегемота. Он просто утверждал, что каждый организм имеет собственную энтелехию. Законы биологии он истолковывал как проявление энтелехии. Так, например, если полностью отрезать у морского ежа конечность, он не выживет; если отрезать другим способом, то еж выживет, и у него вырастет неполная конечность; если разрез сделать иначе и на определенной стадии роста ежа, то конечность восстановится полностью. Можно ли было эмпирически проверить наличие энтелехии? Нет, поскольку она ничем себя не проявляла. Гипотеза энтелехии ничего не добавляла к научному объяснению, и вскоре была отброшена как бесполезная.

Прагматические принципы:

принцип простоты - требование использовать при объяснении изучаемого объекта как можно меньше независимых допущений, которые при этом должны быть как можно более простыми;

принцип привычности - требование объяснять, насколько это возможно, новые явления с помощью известных законов;

принцип технологической применимости - требование максимальной эффективности практического применения полученного знания.

В истории естественнонаучного познания сложились три модели построения научного знания (или теории):

Дедуктивно-аксиоматическая модель - способ построения научного знания, при котором в основу кладутся некоторые исходные положения, не требующие доказательства в силу своей очевидности, - аксиомы или постулаты. Все остальные утверждения выводятся из них чисто логическим дедуктивным путем, посредством доказательства. Исходные положения, принимаемые без доказательства, называются постулатами, положения, доказываемые на их основе, - теоремами. Аксиоматический метод зародился в Древней Греции и приобрел известность благодаря «Началам» Эвклида - это было первое аксиоматическое истолкование геометрии.

В настоящее время дедуктивно-аксиоматическая модель стала использовать особый подход - формализацию. В научном исследовании стали применяться формализованные (искусственные) языки. Процесс формализации связан с наличием трех условий: 1) алфавита - определенного набора знаков, имеющих только одно значение; 2) алгоритма - правил перевода научных высказываний на язык формул; 3) правил вывода.

Формализованные языки имеют перед естественным языком важнейшие преимущества: 1) возможность проведения исследования чисто формальным путем (оперирование знаками) без непосредственного обращения к объекту;

2) моносемичность (каждый знак имеет только одно значение). Однако возможности любого формализованного языка остаются принципиально ограниченными, что показал в своей знаменитой теореме неполноты в начале 30-х годов ХХ в. австрийский математик и логик Курт Гёдель. Дедуктивно-аксиоматическая модель обоснования научного знания лежит в основе концепции рационализма.

2. Индуктивистская модель связана с принципами научной индукции. Как мы уже выяснили, научная индукция основана на выявлении причинной связи между явлениями (каузальное объяснение). Эта модель обоснования научного знания лежит в основе концепции эмпиризма.

3. Гипотетико-дедуктивная (стандартная) модель представляет собой взаимосвязь индукции и дедукции и является способом получения теоретических законов с помощью гипотез. Суть этой концепции состоит в следующем: единообразие мира, которое наука выражает в виде законов различной степени общности; познание начинается с фактов, т.е. результатов наблюдений и экспериментов; в процессе обобщения фактов (индукция) формулируются эмпирические законы, которые объясняют именно данные факты. Однако от фактов и эмпирических законов нет прямого пути к теоретическим законам. Из теоретических законов можно дедуцировать эмпирические законы, но сами теоретические законы получены путем гипотезы (догадки). Именно в этом контексте становится понятной фраза Эйнштейна о том, что никакой логический путь не ведет от наблюдений к основным принципам теории. Возникновение догадки - это иррациональный компонент познания, в этом процессе огромная роль принадлежит интуиции.

Если же рассматривать знание о природе с точки зрения его формы и используемого языка, то можно выделить такие виды естествознания, как: математическое, таксономическое и дескриптивное. Математическое естествознание - высшая форма развития научного знания. Наиболее математизированной из всех наук о природе является физика, затем химия, которая в своем учении об атомно-молекулярной структуре вещества тесно связана с физикой. Математический аппарат используется и в биологии, а также в других естественных науках, однако в них он не является основным способом изложения знания, здесь главную роль играют классификации (таксономия) и описание (дескрипция).

Блестящим примером научной классификации является периодическая система элементов Д.И. Менделеева. Она фиксирует закономерные связи между химическими элементами и определяет место каждого из них в единой таблице. Это позволило сделать замечательно подтвердившиеся прогнозы относительно неизвестных еще элементов.

Всеобщую известность в ХVIII - ХIХ вв. получила классификация живых существ К. Линнея. Он видел задачу описательного естествознания в расположении объектов наблюдения - элементов живой и неживой природы - в строгий порядок по ясным и конкретным признакам. Классификация должна была выявить строгие закономерности и порядок в строении мира, с помощью которых можно было бы дать полное и глубокое объяснение природы.

В описательных науках мысль исследователя вынуждена обращаться непосредственно к данным наблюдения и эксперимента, здесь реже удается обнаружить закономерные связи. Описательные методы широко используются в биологии, медицине и т.п. Описание изучаемых явлений может быть словесным, графическим, схематическим. Для некоторых особенно сложных явлений этот метод является наиболее подходящим; сами явления таковы, что они не подчиняются жестким требованиям гипотетико-дедуктивного метода.

Основные понятия темы:

Природа - это весь материально-энергетический и информационный мир Вселенной.

Метод - совокупность принципов, правил и приемов практической и теоретической деятельности.

Эмпиризм - направление в методологии, признающее опыт единственным источником достоверного знания, сводящее содержание знания к описанию этого опыта.

Рационализм - направление в методологии, согласно которому достоверное знание дает только разум, логическое мышление.

Факт - 1) действительное событие, то, что существует на самом деле;

2) (научный факт) - суждение о единичном, полученное в результате наблюдения, эксперимента.

Принцип - сложная, концентрированная форма знания, которая аккумулирует в себе основное направление исследования, его «дух».

Теория - логически организованная система научных знаний, которая дает целостное и всестороннее описание объекта.

Проблема - это такой научный вопрос, на который нельзя ответить, пользуясь имеющимися в наличии средствами.

Концепция - основной способ понимания, трактовки каких-либо явлений.

Гипотеза - это научное предположение, опирающееся на факты, выраженное в форме суждения, или системы взаимосвязанных суждений, о причине, механизме изучаемых явлений.

Верификация (эмпирическое подтверждение) - процедура проверки научных высказываний через сведение их к опыту.

Натурфилософия - умозрительный подход к пониманию природы как целого.

Тема 3. Динамика естествознания и тенденции его развития

1. Возникновение естествознания. Проблема начала науки

Для понимания того, что представляет собой современное естествознание, важно выяснить, когда оно возникло. Существует несколько точек зрения по вопросу о начале науки. Иногда отстаивается позиция, что естествознание возникло в каменном веке, когда человек стал накапливать и передавать знания о мире. Джон Бернал в книге «Наука в истории общества» пишет: «Так как основное свойство естествознания заключается в том, что оно имеет дело с действенными манипуляциями и преображениями материи, главный поток науки вытекает из практических технических приемов первобытного человека…»

Некоторые историки науки считают, что естествознание возникло в Древней Греции, где на фоне разложения мифологического мышления возникают первые программы исследования природы. Уже в Древнем Египте и Вавилоне были накоплены значительные математические знания, но только греки начали доказывать теоремы. Если науку трактовать как знания с его обоснованием, то вполне справедливо считать, что она возникла примерно в V веке до н.э. в городах-полисах Греции - очагах будущей европейской культуры.

Большинство историков науки считает, что о естествознании в современном значении этого слова можно говорить только начиная с ХVI- ХVII вв. Это эпоха научной революции, связанная с именами И. Кеплера, Х. Гюйгенса, Г. Галилея, И. Ньютона. Рождение естествознания в этом случае отождествляется с рождением современной физики и необходимого для нее математического аппарата. В это же время происходит становление науки как социального института. В 1662 г. возникает Лондонское Королевское общество, в 1666 г. - Парижская Академия Наук.

Существует точка зрения, что современное естествознание возникло в конце ХIХ в. В это время наука оформляется в особую профессию благодаря в первую очередь реформам Берлинского университета, проходившим под руководством Вильгельма Гумбольдта. В результате этих реформ появилась новая модель университетского образования, в которой обучение совмещено с научно - исследовательской деятельностью. Эта модель науки была лучше всего реализована в лаборатории известного химика Ю. Либиха в Гессене. Процесс превращения науки в профессию завершает ее становление как современной науки.

Таким образом, наука - это сложное многогранное социальное образование, поэтому в зависимости от того, какой аспект ее развития мы делаем предметом анализа, мы получим разные точки отсчета возникновения науки:

- как знания и деятельность по производству этих знаний - с начала человеческой культуры;

- как форма общественного сознания - Др. Греция V века;

- как социальный институт - Новое время;

- как система подготовки кадров - середина ХIХ века;

- как непосредственная производительная сила - вторая половина ХХ века.

2. Основные модели развития естественнонаучного знания

В методологии науки существует множество моделей логики развития научного знания, но некоторые из них все же являются приоритетными. Рассмотрим некоторые из них.

Концепция развития науки, разработанная американским философом Томасом Куном и представленная в его книге «Структура научных революций», еще в 60-е годы ХХ века собрала наибольшее число сторонников. Т. Кун отметил такой интересный факт: ученые-обществоведы спорят, в основном, по фундаментальным вопросам, представители естествознания по таким вопросам спорят очень редко, только тогда, когда их науки переживают кризис. Обычно естествоиспытатели долго работают в определенных рамках, очерченных фундаментальными научными открытиями.

Т. Кун ввел понятие «парадигма» (признанная научным сообществом модель постановки и решения проблем). В рамках парадигмы формулируются общие базисные положения, используемые в теории, задаются идеалы научного объяснения и организации научного знания, его оценки.

Парадигма содержит особый способ организации знания, влияющий на выбор направления исследований и образцы решения конкретных проблем. Сама парадигма не выполняет непосредственно объяснительной функции и не является теорией, хотя и основана на определенной фундаментальной теории. Она выступает в роли предпосылки построения и обоснования различных теорий и определяет стиль научных исследований. Т. Кун причислял к парадигмам в истории науки аристотелевскую динамику, птолемеевскую астрономию, ньютоновскую механику и т.д.

Развитие научного знания внутри парадигмы получило название «нормальной науки». Смена парадигм является научной революцией. Например, смена классической ньютоновской физики релятивистской эйнштейновской.

Таким образом, согласно модели Куна, развитие науки представляет собой единство экстенсивного («нормальная наука») и интенсивного (научная революция) этапов. Утверждение новой парадигмы происходит в условиях огромного противодействия сторонников прежней. Поскольку новых подходов может быть несколько, то выбор принципов, составляющих будущую парадигму, происходит не рациональным способом, а скорее в результате иррационального акта веры в то, что мир устроен именно так.

В ответ на это появились другие альтернативные модели науки. Имре Лакатос (Лакатош) предложил методологию научно-исследовательских программ, которая в отличие от модели Т. Куна основана на выборе одной из конкурирующих программ путем применения четких, рациональных критериев. История развития науки - это конкуренция научно - исследовательских программ, имеющих следующую структуру:

- «жесткое ядро», заключающее в себе исходные положения, неопровержимые для сторонников программы.

- «защитный пояс» - включает гипотезы, изменения в нем не затрагивают «жесткого ядра».

- «негативная эвристика» - защита ядра программы с помощью вспомогательных гипотез и допущений, которые снимают противоречия с аномальными фактами.

- «позитивная эвристика» - предположения, направленные на то, чтобы изменять и развивать «опровержимые варианты» исследовательской программы, т.е. определять проблемы, выделять защитный пояс вспомогательных гипотез, предвидеть аномалии и т.п. Ученые, работающие в рамках какой-либо научно-исследовательской программы, могут долгое время игнорировать противоречивые факты и критику. Они считают, что решение конструктивных задач, которое определяется «позитивной эвристикой», приведет к объяснению непонятных фактов. Это дает устойчивость развитию науки. Однако позитивная эвристическая сила любой научно-исследовательской программы все же исчерпывает себя и на смену ей приходит другая. Такое вытеснение одной программы другой является научной революцией.

Таким образом, источником развития науки является конкуренция научных программ, обусловливающая непрерывный рост научного знания.

Третья модель развития науки принадлежит американскому философу К. Попперу. Она получила название «концепции перманентной революции». В ее основе лежит принцип фальсификации: теория считается научной, если она опровержима. Прямое подтверждение теории часто затруднено невозможностью учета всех частных случаев ее действия, а для опровержения теории достаточно всего одного случая, с ней не совпадающего. Если теория сформулирована так, что ситуация, в которой она будет опровергнута, может существовать, то она является научной. Теория, не опровержимая в принципе, не может быть научной. Познание идет в направлении: теория - факты - новые проблемы. Развитие науки и есть движение от одних проблем к другим в ходе непрерывной революции.

3. Научные революции и смена картин мира

Естествознание - это такая система знаний о природе, которая представляет собой нечто единое и цельное. Чтобы подчеркнуть фундаментальный характер основных и важнейших знаний о природе, ученые ввели понятие естественнонаучной картины мира (ЕНКМ), под которой понимают систему важнейших принципов и законов, лежащих в основе объяснения природы. (Картина мира - целостный, непротиворечивый образ действительности).

Как правило, в формировании такой картины важную роль играют концепции и теории наиболее развитых отраслей естествознания, которые выдвигаются в качестве его лидеров. Это не означает, что другие науки не участвуют в формировании картины природы. ЕНКМ - результат синтеза фундаментальных открытий и результатов исследования всех отраслей естествознания. ЕНКМ оказывает воздействие на другие отрасли науки, в том числе и гуманитарные, и определяет научный климат эпохи.

ЕНКМ - целостная система представлений об общих свойствах и закономерностях природы, возникающая в результате синтеза основных естественнонаучных принципов.

История естествознания свидетельствует о том, что лидером естествознания была и остается физика - наиболее развитая и систематизированная наука о природе. Когда формировалось мировоззрение европейской цивилизации Нового времени, и складывалась научная картина мира, ее определяли именно принципы и концепции физики.

В истории естествознания сменяли друг друга физические картины мира:

Механическая картина мира (МКМ)

Электромагнитная картина мира (ЭМКМ)

Квантово-релятивистская картина мира (КРКМ).

Как видно, физическая картина мира обусловлена той фундаментальной теорией, с помощью которой объясняли или пытались объяснить любые явления природы. Рассмотрим особенности каждой из них.

Характерные особенности механической картины мира:

- атомизм - учение о мире как совокупности огромного числа неделимых частиц, перемещающихся в пространстве и времени. Поэтому МКМ часто называют корпускулярной концепцией природы. Материя - это атомы.

- движение - ключевое понятие, из него выводились понятия силы, массы, тяготения. (Ньютон: законы движения есть законы мироздания).

- принцип дальнодействия (Ньютон): взаимодействие между телами происходит мгновенно на любом расстоянии, без каких-либо материальных посредников;

- принцип абсолютности пространства и времени, которые не связаны с движением тел. Пространство является пустым вместилищем тел, время - чистая длительность.

- принцип детерминизма: любые события жестко предопределены законами механики. Согласно этому принципу можно точно и однозначно определить состояние механической системы ее предыдущим состоянием, случайности исключаются.

- принцип редукционизма: сведение закономерностей более высоких форм движения материи к законам простейшей формы - механической. Образ мира - машина, совершенный часовой механизм.

Световые, тепловые, электрические, магнитные явления не вписывались в механическую картину мира.

Электромагнитная картина мира.

Майкл Фарадей ввел понятие электромагнитного поля, проводил опыты по его изучению, пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными. (Континуальность - непрерывность). На основе опытов по изучению электромагнитного поля Джеймс Клерк Максвелл создал электромагнитную теорию, которая легла в основу новой картины мира.

Основные черты ЭМКМ:

- электромагнитное поле сплошь непрерывно, заряды в нем являются точечными силовыми центрами. Поэтому ЭМКМ называют континуальной концепцией природы.

- в корне изменились взгляды на материю, пространство, время и силу. Материя - единое абсолютно непрерывное бесконечное поле с силовыми точечными центрами (электрическими зарядами) и волновое движение в нем (колебания). Движение не есть механическое перемещение, а распространение колебаний в поле, которые описываются не законами механики, а законами электродинамики.

- пустого пространства нет, так как поле является абсолютно непрерывной материей. Реляционное понимание пространства и времени. Пространство и время зависят от материи.

- принцип близкодействия (Фарадей): любые взаимодействия передаются полем от точки к точке непрерывно и с конечной скоростью.

- принцип детерминизма стал включать понятие вероятности. Случайность - форма проявления необходимости.

- отказ от механистического редукционизма.

Квантово-релятивистская картина мира.

В современной физике в основе объяснения мира лежат две фундаментальные теории - квантовая теория и теория относительности Эйнштейна. Хотя они и пересекаются, но относятся к разным уровням наблюдения. Квантовая теория необходима для изучения явлений на микроуровне (атомы, ядерные и субъядерные феномены), теория относительности относится к астрономическим скоростям и расстояниям.

Характерные черты КРКМ:

- Корпускулярно-волновой дуализм.

- Основным материальным объектом является квантовое поле, переход которого из одного состояния в другое меняет число частиц. Основная особенность элементарных частиц - универсальная взаимозависимость и взаимопревращаемость.

- Движение - частный случай физического взаимодействия. Известны 4 вида фундаментальных физических взаимодействий: гравитационное, электромагнитное, сильное и слабое. Они описываются на основе принципа близкодействия: взаимодействия передаются соответствующими полями от точки к точке, скорость передачи всегда конечна и не может превышать скорость света в вакууме (300 тыс. км/сек).

- Окончательно утверждается принцип относительности пространства и времени, зависимость их от материи. Пространство-время образуют единый четырехмерный континуум.

- Закономерность и причинность выступают в вероятностной форме, так называемых, статистических законов.

- В картину мира включается наблюдатель, от присутствия которого зависят исследуемые свойства объектов. Мир предстает как мыслеобраз.

К концу ХХ в. облик естествознания существенно изменился. Изменения в фундаментальных науках определяют общие контуры новой научной картины мира. Для нее характерны:

- глобальный эволюционизм - применение идеи развития ко всей материи, в том числе и Вселенной в целом. Эволюционная концепция проникла во все естественные науки - от физики до геологии. Возникающие в результате процессов дифференциации и интеграции новые научные дисциплины изначально эволюционны (экология, биогеохимия, антропология).

- рассмотрение всех процессов природы с точки зрения самоорганизации (теория самоорганизации - синергетика). Синергетика пытается открыть универсальный механизм, осуществляющий самоорганизацию как живой, так и неживой природы. Самоорганизация понимается как спонтанный (самопроизвольный) переход открытой неравновесной системы от менее сложных и упорядоченных форм организации к более сложным и упорядоченным. Открытые системы - это системы, которые обмениваются веществом, энергией с внешней средой. Неравновесные - это системы, которые находятся в состоянии, далеком от термодинамического равновесия (= максимальная энтропия, т.е. хаос).

- системность - принцип, согласно которому все в мире, в том числе и сама Вселенная, имеет системную организацию, т.е. образовано из множества элементов разного уровня сложности и упорядоченности. Для системы характерны: интегративность, иерархичность, субординация элементов.

- историчность означает принципиальную незавершенность научной картины мира.

Развитие естествознания вело к смене картин мира, а значит, к смене основных принципов и законов объяснения природы. Этот период развития естествознания принято называть революционным. Научная революция - это интенсивный период развития науки, ведущий к радикальным изменениям в системе знаний, в принципах и методах научного познания. Для научной революции всегда характерно возникновение кризисных ситуаций, связанных с коренной ломкой устоявшихся господствующих представлений о природе. В истории науки выделяют несколько типов научных революций:

частная - затрагивает одну область знания;

комплексная - затрагивает ряд областей знания;

глобальная - радикально меняет основания науки.

В истории науки глобальных революций было три: В VI - IV вв. до н.э. возникла наука как рациональный способ познания мира; ХVI-ХVII вв. - революция привела к созданию классического естествознания; ХХ в. - научно-техническая революция - вела не только к радикальным изменениям в науке и технике, но и к масштабным социально-экономическим преобразованиям, в том числе качественным изменениям в производительных силах общества.

Итак, глобальная научная революция означает «потрясение основ», в результате которого происходит смена парадигм. В истории развития естествознания принято выделять три глобальные научные революции и называть по именам ученых, сыгравших в них решающую роль: аристотелевская, ньютоновская и эйнштейновская.

В VI - IV вв. до н.э. возникла наука как рациональный способ познания мира. Аристотель создал формальную логику - науку о доказательстве, главный инструмент выведения и систематизации знания. Аристотель впервые предметно дифференцировал научное знание: отделил науки о природе от метафизики (философии) и математики. Аристотелевские нормы научности знания, способы обоснования в науке успешно использовались в течение 1000 лет, а законы формальной логики действуют и поныне.

Революция в естествознании, начавшаяся в 90-х гг. ХIХ в. и продолжавшаяся до середины ХХ в. также носила глобальный характер. Она началась в физике, а затем распространилась на все остальные науки.

I этап (90-е гг. ХIХ в. - 20-е гг. ХХ в.): были сделаны открытия, в корне изменившие научные представления о мире,-

электромагнитных волн (Герц);

коротковолнового электромагнитного излучения (Рентген);

радиоактивности (Беккерель);

электрона (Томсон);

светового давления (Лебедев);

идеи кванта (М. Планк);

создание теории относительности (Эйнштейн) и др.

Крушение прежних представлений о материи и ее строении, свойствах, формах движения и типах закономерностей, о пространстве и времени получило название «кризиса физики», которое обозначало кризис механистических оснований классической науки.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


© 2008
Полное или частичном использовании материалов
запрещено.