РУБРИКИ

Концепции современного естествознания

 РЕКОМЕНДУЕМ

Главная

Валютные отношения

Ветеринария

Военная кафедра

География

Геодезия

Геология

Астрономия и космонавтика

Банковское биржевое дело

Безопасность жизнедеятельности

Биология и естествознание

Бухгалтерский учет и аудит

Военное дело и гражд. оборона

Кибернетика

Коммуникации и связь

Косметология

Криминалистика

Макроэкономика экономическая

Маркетинг

Международные экономические и

Менеджмент

Микроэкономика экономика

ПОДПИСАТЬСЯ

Рассылка

ПОИСК

Концепции современного естествознания

p align="left">Механистические взгляды на мир господствовали в естествознании не только в XVII, XVIII , но и почти весь XIX век. В целом природа понималась как гигантская механическая система, функционирующая по законам классической механики. Считалось, что в силу необходимости, действующей в природе, судьба даже отдельной материальной частицы заранее предрешена на все времена. Ученые-естествоиспытатели видели в классической механике прочную и окончательную основу естествознания. Многие естествоиспытатели вслед за Ньютоном старались объяснить, исходя из начал механики самые различные природные явления. При этом они неправомерно экстраполировали законы, установленные лишь для механической сферы явлений, на все процессы окружающего мира. Длительное время теории, объяснявшие закономерности соединения химических элементов, опирались на идею тяготения между атомами. Лаплас был убежден, что к закону всемирного тяготения сводятся все явления, известные ученым. Исходя из этого, он работал над созданием новой, молекулярной механики, которая, по его мнению, была призвана дополнить механику Ньютона и объяснить химические реакции, капиллярные явления, феномен кристаллизации, а также то, почему вещество может быть твердым, жидким или газообразным. Лаплас видел причины всего этого во взаимном притяжении между молекулами, которое, считал он, есть только «видоизменение всемирного тяготения». Как очередное подтверждение ньютоновского подхода к вопросу об устройстве мира было первоначально воспринято физиками открытие, сделанное французским военным инженером, членом парижской Академии наук Шарлем Огюстом Кулоном (1736 - 1806). Оказалось, что положительный и отрицательный электрические заряды притягиваются друг к другу прямо пропорционально величине зарядов и обратно пропорционально квадрату расстояния между ними. Это означало, что в науке впервые появился один из законов электромагнетизма. После Кулона открылась возможность построения математической теории электрических и магнитных явлений. Механическая картина мира знала только один вид материи - вещество, состоящее из частиц, имеющих массу. В XIX веке к числу свойств частиц стали прибавлять электрический заряд. Английский химик и физик Майкл Фарадей (1791 - 1867) ввел в науку понятие электромагнитного поля. Ему удалось показать опытным путем, что между магнетизмом и электричеством существует прямая динамическая связь. Таким образом, он впервые объединил электричество и магнетизм, признал их одной и той же силой природы. В результате в естествознании начало утверждаться понимание того, что, кроме вещества, в природе существует еще и поле. Математическую разработку идей Фарадея предпринял выдающийся английский ученый Джеймс Клерк Максвелл (1831 - 1879). Его основной работой, заключавшей в себе математическую теорию электромагнитного поля, явился «Трактат об электричестве и магнетизме», изданный в 1873 г. Введение Фарадеем понятия электромагнитного поля и математическое определение его законов, данное в уравнениях Максвелла, явились самыми крупными событиями в физике со времен Галилея и Ньютона. Но потребовались новые результаты, чтобы теория Максвелла стала достоянием физики. Решающую роль в победе этой теории сыграл немецкий физик Генрих Рудольф Герц (1857 - 1894). В 1886 году Герц продемонстрировал «беспроволочное распространение» электромагнитных волн и тем самым экспериментально проверил теоретические выводы Максвелла. Он также смог доказать принципиальную тождественность полученных им электромагнитных переменных полей и световых волн. Работы в области электромагнетизма положили начало крушению механистической картины мира и открыли путь к новому миропониманию, отличающемуся от механистического. Результаты работ Фарадея, Максвелла и Герца привели к развитию современной физики, к созданию новых понятий, образующих новую картину действительности.

9. Физика на рубеже XIX-XX веков, ее открытия и достижения

Классическая механика господствовала в науке два столетия, идя от одного достижения к другому. Казалось, что ничто не предвещало заминок и неудач. Была создана кинетическая теория газов на основе статистического описания поведения большого числа движущихся частиц атомов или молекул. Были открыты законы термодинамики, создана теория электричества и магнетизма, получены знаменитые уравнения электродинамики Максвелла, объединившие эти теории. Однако оказалось, что, прекрасно описывая явления электромагнетизма, эти уравнения не подчиняются принципам относительности Галилея. Покоящийся и движущийся наблюдатель будут получать разные результаты при рассмотрении процессов взаимодействия движущихся и неподвижных зарядов. Принцип относительности Галилея стал несовместимым с уравнениями Максвелла. К концу XIX века это противоречие затронуло основания физики. Его необходимо было разрешить. В конце концов естествознание вынуждено было отказаться от признания особой, универсальной роли механики. На смену ей постепенно приходило новое понимание физической реальности.

В 1895 году началась научная революция, ознаменовавшая переход к новому способу познания, отражающему глубинные связи и отношения в природе. Она включала в себя как неожиданные открытия (открытия рентгеновских лучей, радиоактивности, и т.д.), так и великие теоретические достижения: квантовая теория М. Планка (1900 г.), специальная и общая теория относительности А. Эйнштейна (1905 - 1906 гг.), атомная теория Резерфорда - Бора в 1913 г. Английский физик и общественный деятель Дж. Бернал назвал этот период в развитии физики героическим. В это время исследуются новые миры главным образом с помощью технических и теоретических средств старой науки XIX века. Это был период в основном индивидуальных достижений: супругов Кюри, Резерфорда, Планка, Бора, Эйнштейна.

Эволюция в науке на рубеже XIX - XX веков принесла немало сенсационных открытий, разрушивших прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д. В 1895 году В. Рентген открыл невидимые глазом электромагнитные излучения, проникающие через некоторые непрозрачные для видимого света материалы. Эти лучи были названы рентгеновскими. В 1896 году французский физик А. Беккерель открыл явление естественной радиоактивности. Радиоактивное излучение свидетельствовало о наличии внутри атома колоссальных источников энергии и о превращаемости элементов. В 1897 году английский физик Дж. Томсон открыл первую элементарную частицу - электрон. Открытия радиоактивности и электрона выдвинули проблему внутреннего строения атома. Уяснив, что электрон является составной частью атомов, Дж. Томсон предложил в 1903 году первую (электромагнитную) модель атома. Согласно этой модели, отрицательно заряженные электроны располагаются определенным образом внутри положительно заряженной сферы. При устойчивом состоянии атома электроны располагаются концентрическими слоями. Несмотря на наивность этой модели, представление о слоистом расположении электронов оказалось перспективным.

В 1904 году японский физик Нагаоке пришел к выводу, что атом по своему строению напоминает Солнечную систему, где вокруг положительного ядра вращается кольцо, состоящее из большого числа электронов. Эта модель сначала не привлекла внимания физиков, так как противоречила очевидным фактам. Однако в 1909 - 1910 гг. английский физик Э. Резерфорд обнаружил, что в атомах существуют ядра - положительно заряженные микрочастицы, размер которых чрезвычайно мал по сравнению с размерами атомов. Но масса атома почти полностью сосредоточена в его ядре. Резерфорд разработал новый вариант планетарной модели. В центре атома расположено ядро с размером порядка 10-13 см. Вокруг него вращаются электроны, число которых таково, что общий заряд атома равен нулю. Однако эта модель атома оказалась несовместимой с электродинамикой Максвелла, согласно которой вращающиеся электроны должны непрерывно излучать электромагнитные волны, терять энергию и падать на ядро, что ведет к неустойчивости атома. Однако это в природе не наблюдается. Электроны, двигающиеся по круговым орбитам вокруг ядра, не только не падали на ядро, но и излучали не непрерывную энергию, а лишь определенными порциями - квантами. Это явление объяснил немецкий физик М. Планк в своей теории, получившей название квантовой.

В 1913 году датский физик Н. Бор, опираясь на теорию М. Планка, разработал квантовую модель атома. В ее основу он положил следующие постулаты: в любом атоме существуют дискетные (стационарные) состояния, находясь в которых атом энергию не излучает; при переходе атома из одного стационарного состояния в другое он излучает или поглощает порцию энергии.

Ядром революции в естествознании на рубеже XIX - XX веков явилось создание новой механики. Размышляя над тем, как примирить электромагнитную теорию Максвелла с классической механикой, А. Эйнштейн в 1905 году пришел к выводу, что принцип относительности справедлив не только в механике, но и в оптике и электродинамике, а видоизменять надо законы и принципы классической механики. Подвергнув глубокому критическому анализу концепцию абсолютного пространства и времени, он создал специальную теорию относительности (ее часто называют релятивистской). В ней рассматриваются явления, для которых силы тяготения слабы или вообще не существуют. Специальная теория относительности представляет собой современную теорию пространства и времени при движении со скоростями, близкими к скорости света. В 1916 году была создана общая теория относительности. Это уже теория не только пространства и времени, но и тяготения. Она открыла реальность нашего искривленного четырехмерного мира пространства-времени. Гравитационное поле может интерпретироваться как следствие искривленного пространства.

Поскольку мы живем в четырехмерном мире, то поведение материальных точек описывается четырьмя координатами и наглядно представить четырехмерное искривленное пространство просто невозможно.

Кривизна реального четырехмерного физического мира меняется от одной области к другой. Она велика вблизи больших масс и выпрямляется вдали от них. Одно из следующих следствий теории относительности - замедление хода времени тяготением, то есть все часы в поле силы тяжести должны замедлять ход и тем больше, чем больше сила тяжести, то есть больше кривизна пространства в данной точке. Это было проверено с необходимой точностью только в 1960 году в 70 футовой башне Гарвардского университета.

Таким образом, научная революция на рубеже XIX - XX веков характеризовалась не только возникновением новых идей, открытием новых неожиданных фактов и явлении, но и преобразованием духа естествознания в целом, возникновением нового способа мышления, глубоким изменением методологических принципов естествознания.

10. Предпосылки и основное содержание новейшей революции в естествознании (XX в.) Становление современной науки

Новейшая революция в естествознании, начавшаяся в 90-х годах XIX века и продолжавшаяся до середины XX века, была глобальной научной революцией, подобной революции XVI-XVII вв. Начавшись в физике, она затем проникла в другие естественные науки, кардинально изменив философские и методологические основания науки, создав феномен современной науки. Первый этап революции, охарактеризованный нами выше, внес значительные изменения в представления о структуре материи, ее свойствах и видах.

Второй этап революции (сер. 20-х гг. - 40-е гг. ХХ в.) был связан с формированием новой квантово-релятивистской картиной мира, основанной на двух фундаментальных теориях этого периода - квантовой механике и теории относительности Эйнштейна. Все предшествующие фундаментальные представления были оспорены и заменены новыми. Вещество больше не рассматривалось как материальная субстанция, время не абсолютно и течет по-разному для объектов, которые движутся с разной скоростью. Вблизи тяготеющих масс время вообще замедляется и при определенных условиях может даже остановиться. Планеты движутся по своим орбитам не потому, что их притягивает некая сила, действующая на расстоянии, но потому, что само пространство, в котором они движутся, искривлено. Субатомные объекты обнаруживали себя и как частицы, и как волны, демонстрируя двойственную природу. Принцип неопределенности в корне подрывал лапласовский механистический детерминизм.

Третий этап (40-е - 70-е гг. ХХ в.) начался с овладения атомной энергией, создания ЭВМ и кибернетики, освоения космоса и развития космонавтики и др. Научная революция соединяется с технической революцией, что приводит к НТР. На лидирующие позиции наряду с физикой начинает претендовать биология. Развитие биосферного подхода привело к новому пониманию феномена жизни. Жизнь перестала восприниматься как случайное явление во Вселенной и превратилась в закономерный этап саморазвития материи. Науки биосферного класса: почвоведение, биогеохимия, биоценология, биогеография изучают системы, в которых происходит взаимопроникновение живой и неживой природы.

Сущность НТР проявляется в превращении науки в непосредственную производительную силу общества, а самого производства - в простое технологическое применение науки. Конкретно этот процесс проявляется во внедрении автоматизации управляемых систем на основе электроники, в использовании новых видов энергии (прежде всего развитие атомной энергетики), в увеличении удельного веса химической технологии, связанной с производством материалов с заранее заданными свойствами, космонавтика.

Начинают формироваться новые представления о Вселенной в целом и обо всех ее проявлениях с точки зрения глобального эволюционизма. Первыми попытались распространить принцип эволюционизма за пределы биологических наук физики. Они выдвинули гипотезу расширения Вселенной, признав несостоятельность предположения о ее стационарности. Вселенная явно развивается, начиная с гипотетического Большого взрыва, давшего энергию для ее формирования и развития. Эта концепция была предложена в 40-е и окончательно утвердилась в 70-е гг. Современный эволюционизм в биологических науках нашел свое проявление в поиске закономерностей и механизмов эволюции сразу на многих уровнях организации живой материи. Основная работа велась (и ведется) на молекулярно-генетическом уровне, в результате чего была создана синтетическая теория эволюции (синтез генетики и дарвинизма). Проникновение принципа эволюционизма в геологию привел к утверждению концепции дрейфа континентов. Возник ряд дисциплин, которые сформировались именно благодаря применению принципов развития и поэтому были эволюционны в самой своей основе: биогеохимия, антропология, экология и т.д.

Одним из важнейших результатов внедрения принципа глобального эволюционизма было возникновение синергетики. Если в классической науке господствовало убеждение, что материи свойственна тенденция к понижению степени ее упорядоченности, стремление к равновесию, т.е. в энергетическом отношении к хаотичности. Однако исследование живых систем давало факты, прямо противоречащие этому. Степень их упорядоченности не только не убывала со временем, а напротив, возрастала. Распространение принципа эволюционизма на все уровни материи сделал это противоречие еще более заметным. Стало очевидным, что для сохранения целостного непротиворечивого представления о мире нужно признать, что в природе, во Вселенной действует не только разрушительный, но и созидательный принцип. Материя способна самоорганизовываться и самоусложняться. Возникла теория самоорганизации, которая стала развиваться по нескольким направлениям - синергетика (Г.Хакен), неравновесная термодинамика (И.Пригожин), теория катастроф (Р.Том). Сформировавшись на базе физических дисциплин - термодинамики, радиофизики и др., в настоящее время синергетика имеет междисциплинарный характер. Ее идеи подводят базу под глобальный эволюционный синтез, осуществляющийся в науке.

В то же время во второй половине ХХ века стала складываться парадоксальная ситуация: с одной стороны, наука предъявила весомые доказательства своей ведущей роли в обществе, с другой стороны, в культуре формировалось и развивалось отрицательное отношение к науке - антисциентизм. Использование научных открытий для создания новых видов оружия и вооружения злодеев средствами массового уничтожения (от ядерного до химического и бактериологического), применение научных достижений для манипулирования сознанием людей, попытки создания в обществе тотального компьютерного контроля, эксперименты с генами животных и людей и др. - все это заставило многих отказаться от своей прежней безоговорочной веры в науку. Все это свидетельствует о кризисе культуры и цивилизации и связанной с ним переоценке ценностей. При этом подвергаются серьезной критике и уточняются место и роль науки, и, прежде всего, естествознания и техники, в жизни общества.

Тема 5. Структурные уровни организации материи

В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета и т.д. может быть рассмотрен как система - сложное образование, включающее составные части, элементы и связи между ними. Элемент в данном случае означает минимальную, далее неделимую часть данной системы.

Совокупность связей между элементами образует структуру системы, устойчивые связи определяют упорядоченность системы. Связи по горизонтали - координирующие, обеспечивают корреляцию (согласованность) системы, ни одна часть системы не может измениться без изменения других частей. Связи по вертикали - связи субординации, одни элементы системы подчиняются другим. Система обладает признаком целостности - это означает, что все ее составные части, соединяясь в целое, образуют качество, не сводимое к качествам отдельных элементов. Согласно современным научным взглядам все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы.

В самом общем смысле слова «система» обозначает любой предмет или любое явление окружающего нас мира и представляет собой взаимосвязь и взаимодействие частей (элементов) в рамках целого. Структура - это внутренняя организация системы, которая способствует связи ее элементов в единое целое и придает ей неповторимые особенности. Структура определяет упорядоченность элементов объекта. Элементами являются любые явления, процессы, а также любые свойства и отношения, находящиеся в какой-либо взаимной связи и соотношении друг с другом.

В понимании структурной организации материи большую роль играет понятие «развитие». Понятие развития неживой и живой природы рассматривается как необратимое направленное изменение структуры объектов природы, поскольку структура выражает уровень организации материи. Важнейшее свойство структуры - ее относительная устойчивость. Структура - это общий, качественно определенный и относительно устойчивый порядок внутренних отношений между подсистемами той или иной системы. Понятие "уровень организации" в отличие от понятия "структура" включает представление о смене структур и ее последовательности в ходе исторического развития системы с момента ее возникновения. В то время как изменение структуры может быть случайным и не всегда имеет направленный характер, изменение уровня организации происходит необходимым образом. Системы, достигшие соответствующего уровня организации и имеющие определенную структуру, приобретают способность использовать информацию для того, чтобы посредством управления сохранить неизменным (или повышать) свой уровень организации и способствовать постоянству (или уменьшению) своей энтропии (энтропия - мера беспорядка).

До недавнего времени естествознание, и другие науки могли обходиться без целостного, системного подхода к своим объектам изучения, без учета исследования процессов образования устойчивых структур и самоорганизации.

В настоящее время проблемы самоорганизации, изучаемые в синергетике, приобретают актуальный характер во многих науках, начиная от физики и кончая экологией. Задача синергетики - выяснение законов построения организации, возникновения упорядоченности. В отличие от кибернетики здесь акцент делается не на процессах управления и обмена информацией, а на принципах построения организации, ее возникновения, развития и самоусложнения (Г.Хакен).

Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем - энергетических, экологических, многих других, требующих привлечения огромных ресурсов.

Современные взгляды на структурную организацию материи

В классическом естествознании учение о принципах структурной организации материи было представлено классическим атомизмом. Идеи атомизма служили фундаментом для синтеза всех знаний о природе. В XX веке классический атомизм подвергся радикальным преобразованиям.

Современные принципы структурной организации материи связаны с развитием системных представлений и включают некоторые концептуальные знания о системе и ее признаках, характеризующих состояния системы, ее поведение, организацию и самоорганизацию, взаимодействие с окружением, целенаправленность и предсказуемость поведения и др. свойства.

Наиболее простой классификацией систем является деление их на статические и динамические, которое, несмотря на его удобство все же условно, т.к. все в мире находится в постоянном изменении. Динамические системы делят на детерминистские и стохастические (вероятностные). Эта классификация основана на характере предсказания динамики поведения систем. В первом случае предсказания носят однозначный и достоверный характер. Такие системы исследуются в механике и астрономии. В отличие от них стохастические системы, которые обычно называют вероятностно - статистическими, имеют дело с массовыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них имеют не достоверный, а лишь вероятностный характер.

По характеру взаимодействия с окружающей средой различают системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация носит в основном условный характер, т.к. представление о закрытых системах возникло в классической термодинамике как определенная абстракция. Подавляющее большинство, если не все системы, являются открытыми.

Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть различными и даже придти в конфликт друг с другом.

Классификация и изучение систем позволили выработать новый метод познания, который получил название системного подхода. Применение системных идей к анализу экономических и социальных процессов способствовало возникновению теории игр и теории принятия решений. Самым значительным шагом в развитии системного метода было появление кибернетики как общей теории управления в технических системах, живых организмах и обществе. Хотя отдельные теории управления существовали и до кибернетики, создание единого междисциплинарного подхода дало возможность раскрыть более глубокие и общие закономерности управления как процесса накопления, передачи и преобразования информации. Само же управление осуществляется с помощью алгоритмов, для обработки которых служат компьютеры.

Универсальная теория систем, обусловившая фундаментальную роль системного метода, выражает с одной стороны, единство материального мира, а с другой стороны, единство научного знания. Важным следствием такого рассмотрения материальных процессов стало ограничение роли редукции в познании систем. Стало ясно, что чем больше одни процессы отличаются от других, чем они качественно разнороднее, тем труднее поддаются редукции. Поэтому закономерности более сложных систем нельзя полностью сводить к законам низших форм или более простых систем. Как антипод редукционистского подхода возникает холистический подход (от греч. holos - целый), согласно которому целое всегда предшествует частям и всегда важнее частей.

Всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Поэтому процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом.

Современная наука рассматривает системы как сложные, открытые, обладающие множеством возможностей новых путей развития. Процессы развития и функционирования сложной системы имеют характер самоорганизации, т.е. возникновения внутренне согласованного функционирования за счет внутренних связей и связей с внешней средой. Самоорганизация - это естественнонаучное выражение процесса самодвижения материи. Способностью к самоорганизации обладают системы живой и неживой природы, а также искусственные системы.

В современной научно обоснованной концепции системной организации материи обычно выделяют три структурных уровня материи:

мегамир - мир космоса (планеты, звездные комплексы, галактики, метагалактики); мир огромных космических масштабов и скоростей, расстояние измеряется световыми годами, а время миллионами и миллиардами лет;

макромир - мир устойчивых форм и соразмерных человеку величин: земных расстояний и скоростей, масс и объемов; размерность макрообъектов соотносима с масштабами человеческого опыта - пространственные величины от долей миллиметра до километров и временные измерения от долей секунды до лет.

микромир - мир атомов и элементарных частиц - предельно малых непосредственно ненаблюдаемых объектов, размерность от 10-8 см до 10-16 см, а время жизни - от бесконечности до 10-24 с.

Изучение иерархии структурных уровней природы связано с решением сложнейшей проблемы определения границ этой иерархии как в мегамире, так и в микромире. Объекты каждой последующей ступени возникают и развиваются в результате объединения и дифференциации определенных множеств объектов предыдущей ступени. Системы становятся все более многоуровневыми. Сложность системы возрастает не только потому, что возрастает число уровней. Существенное значение приобретает развитие новых взаимосвязей между уровнями и со средой, общей для таких объектов и их объединений.

Микромир, будучи подуровнем макромиров и мегамиров, обладает совершенно уникальными особенностями и поэтому не может быть описан теориями, имеющими отношение к другим уровням природы. В частности, этот мир изначально парадоксален. Для него не применим принцип «состоит из». Так, при соударении двух элементарных частиц никаких меньших частиц не образуется. После столкновения двух протонов возникает много других элементарных частиц - в том числе протонов, мезонов, гиперонов. Феномен «множественного рождения» частиц объяснил Гейзенберг: при соударении большая кинетическая энергия превращается в вещество, и мы наблюдаем множественное рождение частиц. Микромир активно изучается. Если 50 лет назад было известно всего лишь 3 типа элементарных частиц (электрон и протон как мельчайшие частицы вещества и фотон как минимальная порция энергии), то сейчас открыто около 400 частиц. Второе парадоксальное свойство микромира связано с двойственной природой микрочастицы, которая одновременно является волной и корпускулой. Поэтому ее невозможно строго однозначно локализовать в пространстве и времени. Эта особенность отражена в принципе соотношения неопределенностей Гейзенберга.

Наблюдаемые человеком уровни организации материи осваиваются с учетом естественных условий обитания людей, т.е. с учетом наших земных закономерностей. Однако это не исключает предположения о том, что на достаточно удаленных от нас уровнях могут существовать формы и состояния материи, характеризующиеся совсем другими свойствами. В связи с этим ученые стали выделять геоцентрические и негеоцентрические материальные системы.

Геоцентрический мир - эталонный и базисный мир ньютонова времени и эвклидова пространства, описывается совокупностью теорий, относящихся к объектам земного масштаба. Негеоцентрические системы - особый тип объективной реальности, характеризующийся иными типами атрибутов, иным пространством, временем, движением, нежели земные. Существует предположение о том, что микромир и мегамир - это окна в негеоцентрические миры, а значит, их закономерности хотя бы в отдаленной степени позволяют представить иной тип взаимодействий, чем в макромире или геоцентрическом типе реальности.

Еще одна типология материальных систем имеет сегодня достаточно широкое распространение. Это деление природы на неорганическую и органическую, в которой особое место занимает социальная форма материи. Неорганическая материя - это элементарные частицы и поля, атомные ядра, атомы, молекулы, макроскопические тела, геологические образования. Органическая материя также имеет многоуровневую структуру: доклеточный уровень - ДНК, РНК, нуклеиновые кислоты; клеточный уровень - самостоятельно существующие одноклеточные организмы; многоклеточный уровень - ткани, органы, функциональные системы (нервная, кровеносная и др.), организмы (растения, животные); надорганизменные структуры - популяции, биоценозы, биосфера. Социальная материя существует лишь благодаря деятельности людей и включает особые подструктуры: индивид, семья, группа, коллектив, государство, нация и др.

Основные понятия темы:

Развитие - необратимое направленное изменение структуры объектов природы.

Структура - это относительно устойчивый порядок внутренних отношений между подсистемами или элементами системы.

Система - определенная целостность, образованная совокупностью взаимодействующих частей, элементов.

Элементы - явления, свойства и отношения, находящиеся во взаимосвязи и соотношении друг с другом в рамках некоторой целостности.

Уровень организации - определенный этап в последовательной смене структур в ходе исторического развития системы с момента ее возникновения.

Мегамир - структурный уровень материи, включающий мир космоса (планеты, звездные комплексы, галактики, метагалактики).

Макромир - мир устойчивых форм и соразмерных человеку величин (мир земных расстояний и скоростей, масс и объемов).

Микромир - мир атомов и элементарных частиц.

Геоцентрический мир - эталонный и базисный мир ньютонова времени и эвклидова пространства, описывается совокупностью теорий, относящихся к объектам земного масштаба.

Негеоцентрический мир - особый тип объективной реальности, характеризующийся иными типами атрибутов, иным пространством, временем, движением по сравнению с нашим, земным миром.

Стохастический - случайный.

Самоорганизация - процесс взаимодействия элементов, в результате которого происходит возникновение нового порядка или структуры в системе.

Тема 6. Макромир: вещество и поле. Принципы классической физики

1. Корпускулярная и континуальная концепции природы

На смену натурфилософскому подходу к описанию природы приходит механический. Он принес большие успехи, за исключением области оптических и электромагнитных явлений, где механика была бессильна, полностью их объяснить. В рамках своего механического понимания мира И. Ньютон создал корпускулярную теорию света: свет - это поток материальных частиц. Светящиеся тела излучают частицы, движущиеся в соответствии с законами механики, и вызывают ощущения света при попадании в глаз. На основе этой теории Ньютон объяснял законы отражения и преломления света.

Х. Гюйгенс (нидерландский ученый) сформулировал волновую теорию, которая по аналогии с движением волн на поверхности воды объясняла движение света. В пространстве существует упругая среда - светоносный эфир. Главный аргумент, который он приводил в защиту своей теории, - факт пересечения двух лучей света, которые пронизывают друг друга точно также как два ряда волн на воде. Против этой теории был такой факт: волны обтекают препятствие, а световой луч этого делать не может. Тень от непрозрачного предмета, помещенного на пути света, имеет резкую границу. Итальянский физик Гримальди с помощью увеличительных линз обнаружил на границах тени слабые участки освещенности в виде перемежающихся светлых и темных полос - ореолов. Это явление получило название дифракции света (разломанный). Однако авторитет Ньютона был настолько высок, что именно его теория света пользовалась признанием, хотя и не могла объяснить явление дифракции.

В нач. ХIХ в. английский физик Т. Юнг и французский физик О. Френель объяснили явление интерференции - появление темных полосок при наложении света на свет. Парадокс: свет, добавленный к свету, не обязательно дает усиление, а может дать более слабый свет или даже темноту. Так как свет - это колебания упругой среды, при наложении волн в противоположных фазах они уничтожают друг друга, поэтому появляются темные полосы.

В области электромагнитных явлений Фарадей и Максвелл показали неадекватность механической модели. Датский физик Эрстед открыл явление электромагнетизма: стрелка компаса, помещенного над проводником, по которому шел электрический ток, отклонялась. Фарадей ввел понятие «силовые линии». Он был убежден, что оптика и электричество взаимосвязаны и образуют единую область - «поле сил». Максвелл дал математическую разработку идеи Фарадея и рассматривал поле как самостоятельную физическую реальность. Фарадей предложил гипотезу, Максвелл создал теорию, а немецкий физик Герц дал экспериментальное подтверждение. В физике окончательно утвердилось понятие «поле» как физическая реальность, новый вид материи.

В конце XIX в. физики пришли к выводу, что материя существует в виде дискретного вещества и непрерывного поля. Вещество и поле различаются:

- вещество дискретно, поле непрерывно;

- вещество обладает массой покоя, а поле - нет;

- вещество малопроницаемо, поле полностью проницаемо;

- скорость распространения поля равна скорости света, скорость движения частиц на много порядков меньше.

Таким образом, вещество - вид материи, обладающий корпускулярными свойствами, для его характеристики используются масса покоя, спин, заряд и др.; поле - вид материи, который описывается длиной волны, фазой, амплитудой и их изменениями в пространстве и времени. Понятие поля нашло применение и в механике, где с его помощью был объяснен феномен гравитации.

2. Детерминизм. Динамические и статистические закономерности

Все явления и процессы в мире связаны между собой. Принцип детерминизма является выражением этой взаимосвязи и дает ответ на вопрос, существует ли в мире упорядоченность и обусловленность всех явлений, или же мир есть неупорядоченный хаос. В механической картине мира все связи между явлениями носят однозначный характер, поэтому миром правит необходимость, а случайностям нет места. П. Лаплас утверждал, что если бы мы в данный момент знали обо всех явлениях природы, то смогли бы логически вывести все события будущего. Следствием механистического детерминизма является фатализм.

Центральным понятием детерминизма является «закон». Закон понимается как объективная, всеобщая, необходимая, повторяющаяся связь между явлениями.

Отличительной особенностью законов классической механики состоит в том, что предсказания, полученные на их основе, носят достоверный и однозначный характер. Они получили название динамических. Динамические закономерности характеризуют поведение изолированных, индивидуальных объектов и позволяют установить точно определенную связь между отдельными состояниями объекта. Иначе говоря, динамические закономерности проявляются в каждом конкретном случае строго однозначно. Механистический детерминизм абсолютизировал динамические закономерности. Позже выяснилось, что не все явления подчиняются динамическим законам. В механике Ньютона и электродинамике Максвелла господствовал классический детерминизм, в рамках которого формируются динамические законы, однозначно связывающие физические параметры отдельных состояний объекта. Наряду с ними в науке с середины XIX века стали все шире применяться законы другого типа. Их предсказания не являются однозначными, а только вероятными. Именно это обстоятельство долгое время служило препятствием для признания их в науке как полноценных законов. Они рассматривались как вспомогательное средство для обобщения и систематизации эмпирических фактов. Эти законы получили название статистических.

Статистические закономерности проявляются в массе явлений и имеют форму тенденции. Эти законы называют вероятными, поскольку они описывают состояние индивидуального объекта лишь с определенной долей вероятности. Статистическая закономерность возникает как результат взаимодействия большого числа элементов и поэтому характеризует их поведение в целом. Необходимость в статистических закономерностях проявляется через действие множества случайных факторов. Эти законы, как и динамические, являются выражением детерминизма. Понятие вероятности в рамках статистического закона выражает степень возможности осуществления явления в конкретной совокупности условий. Вероятность есть количественное выражение возможности, шкала которой располагается от 0 до 1. При вероятности, равной нулю, данное событие никогда не наступает, при вероятности, равной единице, это событие наступает в каждом конкретном случае.

Поскольку динамические законы выражали необходимый характер связи, обеспечивающий точность и достоверность предсказания, их называли детерминистскими. Эта терминология сохранилась до настоящего времени, когда статистические законы по традиции называют индетерминистскими, что не соответствует действительности.

Итак, и динамические, и статистические закономерности выражают детерминизм. Однако это совершенно разные формы.

Классический, или лапласовский, детерминизм основан на представлении, согласно которому весь окружающий мир - это огромная механическая система, поэтому все будущие состояния ее строго предопределены ее начальным состоянием. В основе этой формы детерминизма лежат универсальные законы классической физики.

Вероятностный детерминизм опирается на статистические законы.

Когда сравнивают эти формы выражения регулярности в мире, то обычно обращают внимание на степень достоверности их предсказаний. Строго детерминистские законы дают точные предсказания в тех областях, где можно абстрагироваться от сложного характера взаимодействия между телами, отвлекаться от случайностей и тем самым значительно упрощать действительность. Однако такое упрощение возможно лишь при изучении простейших форм движения. Когда же переходят к исследованию сложных систем, состоящих из большого числа элементов, индивидуальное поведение которых трудно поддается описанию, тогда обращаются к статистическим законам, опирающимся на вероятностные предсказания.

Таким образом, в современной концепции детерминизма органически сочетаются необходимость и случайность. Поэтому мир и события в нем не являются ни фаталистически предопределенными, ни чисто случайными, ничем не обусловленными. Классический детерминизм чрезмерно подчеркивал роль необходимости за счет отрицания случайности в природе и поэтому давал искаженное представление о картине мира. Признание самостоятельности статистических законов, отображающих существование случайных событий, дополняет прежнюю картину строго детерминистского мира. В результате этого необходимость и случайность выступают как взаимосвязанные аспекты, случайность понимается как форма проявления необходимости. Таким образом, детерминизм становится вероятностным.

3. Основные принципы термодинамики. Значение законов термодинамики в описании явлений природы

Статистическое описание природы находит свое воплощение в термодинамике. Термодинамика базируется на двух основных законах.

Закон сохранения энергии. Он выполняется во всех явлениях природы и подтверждается опытом человечества.

Q = U - A, где U - внутренняя энергия, A - работа.

Тепло, сообщенное системе, расходуется на увеличение ее внутренней энергии и на совершение работы против внешних сил. В другой редакции этот закон звучит так: нельзя построить действующую машину, которая бы совершала работу, больше подводимой к ней извне энергии (вечный двигатель первого рода невозможен).

Тепловые процессы протекают самопроизвольно только в определенном направлении, такие процессы называются необратимыми. То есть тепло перетекает от более нагретого тела к менее нагретому.

Второе начало термодинамики указывает на существование двух форм энергии - теплоты (связанной с неупорядоченным, хаотическим движением) и работы, связанной с упорядоченным движением. Немецкий физик Р. Клаузиус использовал для формулировки второго закона термодинамики понятие энтропии, которое впоследствии австрийский физик Л. Больцман интерпретировал в терминах изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок (хаос) в системе.

Энтропия замкнутой системы, т.е. системы, которая не обменивается с окружением ни энергией, ни веществом, постоянно возрастает (второе начало термодинамики).

Таким образом, такие системы эволюционируют в сторону увеличения в них беспорядка, хаоса и дезорганизации, пока не достигнут точки термодинамического равновесия, в которой работа становится невозможной. В точке термодинамического равновесия энтропия максимальна. Поскольку об изменении систем в классической термодинамике мы можем судить по увеличению их энтропии, то энтропия и выступает в качестве своеобразной стрелы времени.

Отличие термодинамической модели от классической механики: необратимость времени.

Отличие от эволюционной теории Дарвина: эволюция - это естественный отбор и усложнение организации систем; термодинамическая же система движется к дезорганизации систем.

Первую попытку распространить законы термодинамики на Вселенную предпринял Р. Клаузиус, выдвинув два постулата:

1. Энергия Вселенной всегда постоянна.

2. Энтропия Вселенной всегда возрастает.

Все процессы во Вселенной направлены в сторону термодинамического равновесия - состояния, характеризующегося наибольшей степенью хаоса, беспорядка и дезорганизации. Во Вселенной должна наступить «тепловая смерть».

Живые организмы, являясь открытыми системами, постоянно обмениваются с окружающей средой веществом и энергией; получая энергию, организмы упорядочиваются, т.е. снижается энтропия. Но если рассматривать систему «организм - среда» в целом, энтропия постоянно растет.

Законы классической механики строго инвариантны, неизменны относительно изменения знака времени: замена «+t» на « -t» ничего в них не меняет. Поэтому и говорят, что механика обратима. Если мы абсолютно точно знаем начальные координаты и импульсы частиц, то можем узнать сколь угодно далекое прошлое и сколь угодно далекое будущее системы. Конечно, практически это осуществить невозможно, ни один компьютер не справится с такой задачей. Главное то, что мы можем это сделать теоретически. В мире ньютоновской механики все события раз и навсегда предопределены, это мир строгого детерминизма, в нем нет места случайностям.

А вот согласно второму началу термодинамики, в изолированной системе все процессы протекают только в одном направлении - к максимальной энтропии, возрастанию хаоса, что сопровождается рассеянием энергии. Проблема, которая потребовала своего решения, выглядела так: как можно вывести необратимость термодинамики из обратимости механики?

Эту проблему пытался решить во второй половине XIX века Л. Больцман. Он обратил внимание на то, что термодинамическая необратимость имеет смысл только для большого числа частиц: если частиц мало, то система оказывается фактически обратимой. Для того чтобы согласовать микроскопическую обратимость с макроскопической необратимостью, Больцман использовал вероятностное описание системы. Однако вскоре было показано, что уже само по себе вероятностное описание в неявном виде содержит представление о существовании "стрелы времени", и поэтому доказательство Больцмана нельзя считать корректным решением проблемы.

Сам Больцман пришел к выводу, что вся бесконечная Вселенная в целом обратима, а наш мир представляет собой по космическим меркам микроскопическую флуктуацию. А в середине XX века пулковский астроном Н.А. Козырев попытался создать необратимую механику, в которой "стрела времени" имеет характер физической реальности и служит источником энергии звезд. Но точка зрения Больцмана допускает возможность нарушения причинности в отдельных достаточно обширных областях Вселенной, а точка зрения Козырева вводит в описание природы некую особую физическую сущность, подобную «жизненной силе».

4. Основные понятия, законы и принципы классической физики

Классическая физика понимается как фундаментальная база исследования макрообъектов. Для иллюстрации этого положения рассмотрим следующий пример. Как движется автомобиль? Поступательное движение поршней в цилиндрах преобразуется во вращательное движение колес. Колеса отталкиваются от поверхности дороги, и в результате автомобиль перемещается в пространстве по отношению к окружающим предметам. Все эти процессы изучает «Механика». Началом «цепочки» механических движений является движение поршня, который толкает газообразная смесь в камере сгорания. Процессы в газах изучает «Молекулярная физика». Часть энергии рабочей смеси преобразуется в энергию поршня, а часть «выбрасывается» в виде теплоты вместе с отработанными газами, расходуется на последующее сжатие рабочей смеси и т.д. Эти энергетические процессы, от которых зависят КПД и мощность двигателя, изучает «Термодинамика». Электромагнитные процессы в системе зажигания изучает «Электродинамика». Поскольку эти процессы формируются с помощью транзисторов микросхем и других устройств, которые основаны на квантовых явлениях, то они изучаются «Квантовой физикой».

Таким образом, движение автомобиля представляет собой сумму самых разных явлений. Различные специальные дисциплины изучают отдельные явления, агрегаты и узлы автомобиля. Это связано с их сложностью и привело к дифференциации науки. Однако самое первое описание движения автомобиля связано с основными законами классической физики.

Самый простой вид движения материи в макромире - это перемещение тел по отношению к другим телам. Для его описания используются основные понятия кинематики: движение, скорость, ускорение, относительность движения, система отсчета, материальная точка, траектория и т.п. и основные законы, объясняющие механическое движение, - законы Ньютона:

Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока оно не понуждается приложенными силами изменить это состояние. (Закон инерции).

Изменение количества движения пропорционально приложенной действующей силе и происходит по направлению той прямой, по которой эта сила действует (второй закон - главный закон динамики).

Действие всегда есть равное и противоположно направленное противодействие, т.е. взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны (третий закон).

Согласно законам механики - основной причиной движения является действие сил. Поэтому анализу понятия силы в классической физике уделяется большое внимание. Силы делятся на: силу упругости (она связана с деформацией тел) и силу трения. Природа этих сил связана с электрическим взаимодействием между атомами; силу тяготения (ее называют силой тяжести, под ее действием свободные тела падают на Землю). Сила тяготения часто проявляется в виде веса - силы, с которой тело действует на опору; силу инерции.

Существуют разные формы движения материи (механическая, тепловая, электрическая и т.д.), которые могут переходить друг в друга. Поэтому физика использует важнейшее понятие, выражающее меру перехода одних форм движения в другие, - это энергия. Важнейшие законы классической физики - законы сохранения:

Закон сохранения энергии: энергия не уничтожается и не создается, а может лишь переходить из одной формы в другую.

Закон сохранения импульса: если сумма внешних сил равна нулю, импульс системы тел остается постоянным при любых происходящих в ней процессах.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


© 2008
Полное или частичном использовании материалов
запрещено.