РУБРИКИ

Концепции современного естествознания

 РЕКОМЕНДУЕМ

Главная

Валютные отношения

Ветеринария

Военная кафедра

География

Геодезия

Геология

Астрономия и космонавтика

Банковское биржевое дело

Безопасность жизнедеятельности

Биология и естествознание

Бухгалтерский учет и аудит

Военное дело и гражд. оборона

Кибернетика

Коммуникации и связь

Косметология

Криминалистика

Макроэкономика экономическая

Маркетинг

Международные экономические и

Менеджмент

Микроэкономика экономика

ПОДПИСАТЬСЯ

Рассылка

ПОИСК

Концепции современного естествознания

p align="left">Микрочастица не имеет положения и скорости в макроскопическом смысле этих понятий. Обычные механические величины применимы в микромире с ограничениями. Существо дела состоит в том, что нельзя рассматривать электрон изолированно, вне взаимодействия с другими микрочастицами. Следовательно, нельзя говорить и о траектории электрона в атоме, его орбите.

В атоме нет электронных орбит, есть электронное облако. Атомное ядро как бы окружено облаком отрицательного заряда, особенно плотным на тех расстояниях от ядра, которые Бор считал радиусами орбит. Это облако есть облако вероятности нахождения электрона. Электронные облака имеют различную форму у различных атомов. Форма и протяженность облака меняются при изменении энергии атома.

Можно ли представить себе электрон? (в атоме) Орбитали дают нам представление только о том, в каких точках пространства вероятнее всего нахождение электрона в данный момент времени. Сказать же точно, где он находится в данный момент времени в атоме, мы не можем потому, что это невозможно вообще. И представить себе электрон мы не можем, потому что в нашем мире нет наглядных объектов, с которыми можно было бы его сопоставить.

При рассмотрении состояния электрона в атоме физики вводят представление об электронном облаке. Форма и эффективные размеры его определяются квантовыми числами n и l и меняются при переходе электрона из одного состояния в другое - отождествлять электронное облако с электроном нельзя.

Чтобы описать размеры и форму электронного облака, используется функция “пси” (волновая функция), которая дает возможность определить вероятность обнаружения электрона с данными квантовыми числами в некотором элементе объема.

Движущийся по орбите электрон можно рассматривать, с одной стороны, как некую корпускулу (с определенными массой, энергией, зарядом), а с другой - как некую волну, длина которой укладывается на длине орбиты целое число раз (это число есть главное квантовое число).

Состояние электрона в атоме определяется набором квантовых чисел:

n - главное квантовое число, 1,2,3... - число уровней энергии. При

n = 1 значение энергии соответствует основному состоянию атома. В основном состоянии атом обладает наименьшим значением энергии. Все состояния атома при n>1 называют возбужденными.

Существенной особенностью всех атомов и молекул является их способность удерживать электроны в ограниченной области пространства. Вследствие волновой природы частиц свободный электрон, движение которого ограничено размерами этого пространства L, должен вести себя подобно звуковой волне, распространяющейся то в одну, то в другую сторону в помещении с абсолютно отражающими стенками. В соответствии с условием обращения в нуль волновой функции электрона на границах пространства допустимы лишь волны, у которых на отрезке длиной L укладывается целое число полуволн. Таким образом, допустимы лишь определенные волновые функции, или, иначе, определенные состояния электрона. Эти условия такие же, как для случая стоячих волн на струне.

Итак, электрон - частица с определенным зарядом и массой, проявляющая специфические волновые свойства и приобретающая поэтому дискретные значения энергии в атоме или молекуле.

Второе квантовое число l называют орбитальным или побочным, оно подчеркивает “неравноценность” всех электронов в данной оболочке.

Орбитальный момент импульса квантуется, принимая только значения, кратные h:

L = lh, l = 0, 1, 2 ... n - 1 Орбитальное квантовое число - l может иметь только положительные значения от 0 до n-1.

Форма электронного облака зависит от значения квантового числа l. Если оно равно нулю, то электронное облако имеет сферическую форму. Если - 1, то форму вращения, полученную из “восьмерки”. При больших значениях - более сложную форму.

Так как момент импульса - вектор, он имеет не только численное значение, но и направление. Обычно не существует такой физической величины, которая имела бы выделенное направление в пространстве, и поэтому направление L не имеет значения. Однако в магнитном поле некоторое направление в пространстве оказывается выделенным. Связь магнитного поля с направлением момента импульса обусловлена тем, что орбитальный электрон подобен крошечному магниту, и поэтому взаимодействует с магнитным полем.

Так как движущийся заряд отрицателен, магнитный момент, обусловленный орбитальным движением электрона, направлен противоположно моменту импульса и, подобно ему, квантуется: величина проекции момента импульса на направление поля определяется квантовым числом m.

Вообще проекция орбитального момента на направление поля равна

Lz = mh,

где m - магнитное квантовое число, которое может иметь значения -l, -l+1, -l+2, ... -1, 0, 1, ... l-2, l-1, l, т.е. всего 2l+1 значений.

Кроме того, электрон, как находящийся внутри атома, так и свободный, имеет некий внутренний, так называемый собственный момент импульса, называемый спином, S.

S = sh, где s - спиновое квантовое число, которое может иметь только одно значение: s = 1/2. Поэтому существуют только две разрешенные проекции S на выбранное направление +1/2 и -1/2, так как проекции L и S могут отличаться только на величины, кратные h.

И в классической, и в квантовой физике заряженное тело, обладающее моментом количества движения, является магнитом.

Орбитальный магнит направлен по оси орбиты. Что касается спинового магнетизма электрона, то для его наглядного изображения следует представить электрон в виде твердого тела, вращающегося вокруг собственной оси (по-английски to spin - крутить волчок).

Но у электрона нет орбиты, и волчком он не является. Тем не менее он имеет и орбитальный и спиновый магнетизм.

Таким образом, электрон в атоме характеризуется четырьмя квантовыми числами n, l, m, s, выражающими четыре физических величины: энергию, орбитальный момент количества движения, его проекцию на выделенное направление в пространстве (направление магнитного поля) и такую же проекцию спинового момента. Без этих квантовых чисел нельзя понять основных свойств атома, а также физического смысла периодического закона Менделеева.

Периодический закон Менделеева

Очевидно, что периодичностью должны обладать свойства электронов в атомах. Если атомы состоят из ядер и электронов, и электроны могут существовать в различных состояниях, то именно эти электронные состояния ответственны за физическое и химическое поведение атомов.

Для понимания распределения электронов по доступным им состояниям необходимо иметь в виду два принципа.

Первый: при прочих равных условиях электрон должен находиться в том состоянии, в каком его энергия минимальна. Если электрону сообщена большая энергия и он имеет возможность перейти на более низкий энергетический уровень, то он это сделает. При этом избыток энергии выделится ввиде света или иным путем.

Второй принцип - запрет Паули. Разберем последовательно строение атомов ряда элементов, помня, что атомный номер элемента выражает число электронов в атоме.

Водород. Наименьшее возможное значение энергии единственного электрона в атоме H соответствует наименьшему значению главного квантового числа n, т.е. 1. Следовательно, l = 0 (наибольшее значение l есть l-1), m = 0 и s имеет произвольное значение +1/2 или -1/2.Главное квантовое число записывается цифрой, а число l - буквой: l=0 - s, l=1 - p, l=2 - d, l=3 - f и т.д. (g, h, i, ...) Значит, в атоме водорода электрон имеет состояние 1 s. В атоме гелия He - два электрона. Они оба могут быть в состоянии 1 s, но согласно принципу Паули их спиновые числа должны иметь разные знаки: +1/2 и -1/2. Обозначив спиновые числа стрелками, можно представить состояния атомов водорода и гелия следующим образом:

1s

H ?

He ??

У лития три электрона. Третий электрон уже не может попасть в клеточку 1s (принцип Паули не допускает этого). Следовательно, у третьего электрона должно возрасти главное квантовое число: n = 2. Он попадает в состояние 2s.

1s 2s

Li ?? ?

Be ?? ???

В каждой клеточке может быть не более двух электронов. Пятый атом бора должен попасть в следующую клетку. Но при n=2 число l может иметь уже два значения: l=0 и l=1. При l=0 число m равно 0 и только 0, а при

l=1 m имеет три значения -1, 0 и 1. Соответственно состоянию с n=2,

l=1, т.е. 2p, принадлежит уже три клеточки, в каждой из которых может поместиться по два электрона с антипараллельными спинами.

Теория и спектроскопия показывают, что заполнение p-клеток происходит по правилу: электроны располагаются прежде всего по клеткам, отвечающим различным значениям квантового числа m так, чтобы все спиновые стрелки смотрели в одну сторону. Это значит, что суммарный спин атома должен быть максимальным.

У атома He электронами использованы все возможности, отвечающие главному квантовому числу n=1, и таких возможностей только 2. У атома Ne заполнены все клеточки, отвечающие n=2; таких клеток 4 и в каждой по 2 электрона, всего 8 электронов.

У следующего за неоном элемента Na начинается новая оболочка: одиннадцатый электрон попадает в состояние 3s и т.д.

Сказанного достаточно, чтобы понять, чем определяется периодичность свойств элементов, открытая Менделеевым. За физические и химические свойства атома ответственны прежде всего его внешние электроны - те электроны, у которых главные квантовые числа имеют наибольшее значение. Обладая наибольшей энергией, эти электроны легче других могут быть отделены от атома, они дальше отстоят от ядра и легче поддаются различным воздействиям. Внутренние электроны, входящие в состав заполненных оболочек, защищены от этих воздействий внешними электронами.

Квантовые переходы и излучение

Почти все свойства атомов - химические, электрические, магнитные, оптические и т.д. - зависят от конфигураций внешних электронов. Только в случае очень сильного воздействия на атом в игру вступают сильно связанные внутренние электроны.

Если сообщить атому достаточную энергию за счет столкновения с быстрым электроном (как это происходит в рентгеновской трубке) или облучая его фотонами большой энергии, то удается выбить один из внутренних K-электронов. Электрон с более удаленной от ядра L-оболочки перейдет на K-оболочку и займет освободившееся место, испуская при этом жесткий фотон. В конце концов, после всех переходов с одной оболочки на другую и испускания серии рентгеновских квантов, из окружающей среды внешней оболочкой будет захвачен свободный электрон и атом вернется в электрически нейтральное состояние.

Атомы и молекулы

Ядра имеют положительный электрический заряд и окружены роем отрицательно заряженных электронов. Такое электрически нейтральное образование называют атомом. Атом есть наименьшая структурная единица химических элементов.

Атомные электроны образуют весьма рыхлые и ажурные оболочки. Распределение электронов по оболочкам подчиняется определенным правилам, установленным квантовой механикой. Электроны, находящиеся на внешних оболочках атомов, определяют их реакционную способность, т.е. их способность вступать в соединение с другими атомами.

Связь атомов возможна, если совместная внешняя оболочка целиком заполнена электронами. Такое образование называют молекулой. Молекула есть наименьшая структурная единица химического соединения. Число возможных комбинаций атомов, определяющих число химических соединений, составляет около 106.

Некоторые атомы (углерода и водорода) способны образовывать сложные молекулярные цепи, являющиеся основой для образования макромолекул, которые проявляют уже биологические свойства.

В природе лишь немногие атомы существуют поодиночке, поскольку у большинства элементов атомы химически нестабильны. Для того, чтобы атом был стабильным, его внешняя электронная оболочка должна быть заполнена определенным числом электронов (у водорода и гелия - 2, у остальных - 8).

Атомы с незаполненными внешними электронными оболочками способны вступать в химические реакции, образуя связи с другими атомами. Реакции сопровождаются перегруппировкой электронов, в результате которой внешняя электронная оболочка у каждого из атомов оказывается заполненной.

Соединением называют вещество, в котором атомы двух или более элементов объединены в определенном соотношении. Соединение характеризуется определенным составом и определенным набором свойств, отличающихся от свойств элементов, из которых оно состоит. Например, свойства воды отличаются от свойств водорода и кислорода, из которых она состоит.

Молекула - это мельчайшая частица соединения, сохраняющая все его свойства (соединения с ионными связями, как например, NaCl, состоят не из молекул, а из ионов). Атомы могут соединяться в молекулы, если энергия связанных атомов окажется меньшей, чем суммарная энергия изолированных атомов.

Кристалл образуется путем регулярного повторения расположения атомных групп в пространстве. Существует 14 различных основных типов кристаллов. Кристаллы могут быть ионными (кристаллы поваренной соли) и ковалентными (графит, алмаз). Металлы образуют еще один тип кристаллических структур, в которых внешние электроны не связаны с каким-либо определенным атомом; эти электроны могут свободно перемещаться внутри металла (электроны проводимости). Металлы со свободными электронами в межатомном пространстве являются хорошими проводниками. В ионных и ковалентных кристаллах каждый электрон связан с определенным атомом или парой атомов; свободные электроны отсутствуют. Поэтому кристаллы типа NaCl или алмаза плохо проводят электричество.

Мир реальных макрообъектов - статистическая физика

Выход книги Дарвина “Происхождение видов” (1859) совпал с открытием Дж. Максвеллом статистического закона о распределении молекул по скоростям, который допускает случайные события. С теорией естественного отбора Дарвина и законом Максвелла в науку вошло представление о динамических и статистических закономерностях. Первые точно определяют поведение отдельных тел, вторые - вероятность поведения тел, входящих в большие ансамбли.

В физике, химии и биологии встречаются статистические закономерности, отличие которых от законов механики состоит в том, что статистические закономерности управляют системами, состоящими из огромного числа объектов, подверженных случайным событиям. Случайными называют события, которые зависят от множества причин, связи между которыми не представляется возможным установить. Но при многократном повторении случайных событий проявляются определенные закономерности.

Открытие законов механики послужило основой для формирования механистической картины мира, согласно которой миром правят строгие однозначные законы, не допускающие никаких случайностей. Течение всех процессов определялось начальными условиями, мир представлялся состоящим из вечных, неделимых частиц, движение которых всегда можно описать с помощью законов механики.

Согласно представлениям того времени чья-то смерть или рождение, хорошая погода сегодня или война в будущем были предопределены существовавшим до этого расположением и скоростью частиц, составляющих Вселенную. “Природа проста и не роскошествует излишними причинами”, - утверждал один из создателей механистической картины мира - Исаак Ньютон. С открытием статистических закономерностей, которые вошли в науку с работами Дарвина, Максвелла, Больцмана, начали формироваться новые представления о мире, которые более адекватно отражали существующие в нем взаимосвязи.

Статистическая физика приняла завершенный вид после работ американского физика Дж.У.Гиббса, который дал общий метод вычисления усредненных макроскопических величин для произвольной системы.

Для описания движения планет, космического корабля, работы простых механизмов используют уравнения механики, которые позволяют определить положения и скорости всех частей системы. Но уравнения механики становятся бессильными, когда число частиц в системе очень велико, например, когда надо описать поведение газа или электрического тока.

Статистическая физика изучает свойства сложных систем - газов, жидкостей, твердых тел и их связь со свойствами отдельных частиц - атомов и молекул, из которых эти системы состоят. Для таких систем не нужно слишком детального описания. Нельзя измерить энергию и импульс всех молекул газа. В газе мы измеряем давление, которое есть результат ударов большого числа молекул; сопротивление кристалла есть следствие большого числа столкновений электронов с атомами. Во всех физических системах, состоящих из большого числа частиц, изучаются величины, усредненные по многим частицам.

Ансамбль (статистический) - совокупность одинаковых физических систем многих частиц, находящихся в одинаковых макроскопических состояниях, в то время как микросостояния могут быть различными.

Тепловое равновесие и флуктуации. Неравновесные состояния и релаксация

Релаксация - процесс установления термодинамического равновесия в макроскопической физической системе. Под временем релаксации разумеют время установления равновесия в системе. Время релаксации существенно зависит от размеров системы, а именно оно растет с увеличением размеров макротел. Это означает, что малые части макросистемы приходят в равновесие значительно быстрее, чем все тело в целом.

В связи с этим можно ввести понятие о локальном равновесии, т.е. равновесии в точке, под которой понимается элемент объема тела, достаточно малый по сравнению с размерами самого тела, но содержащий достаточно большое количество молекул или атомов.

При локальном равновесии “точка среды” характеризуется свои местным значением температуры, а сама неравновесная среда описывается “полем температур”. С течением времени неполное равновесие всей замкнутой системы превращается в полное, температура для всех ее частей постепенно выравнивается. В равновесных системах давление и температура постоянны по всему объему тела. Если же в теле имеется какое-то распределение давлений и температур, значит система неравновесная. Из-за наличия перепадов (градиентов) давления в таком теле возникают внутренние макроскопические движения, характеризующиеся некоторым распределением скоростей.

Тепловая физика: от Карно к Гиббсу

С.Карно, “Размышления о движущей силе огня и машинах, способных развивать эту силу”, 1824 г. Основная идея: тепловая машина производит работу благодаря передаче тепла от источника - нагревателя, находящегося при температуре T1, к холодильнику, находящемуся при температуре T2<<T1, т.е. от более нагретого тела к менее нагретому. С.Карно впервые разработал метод циклов. Цикл - это последовательность процессов, которые возвращают в конечном счете всю систему участвующих в них тел в первоначальное состояние. На основе цикла Карно сформулирован второй закон термодинамики.

Согласно второму закону термодинамики, во всякой изолированной (т.е. не испытывающей никаких воздействий со стороны других тел) системе самопроизвольно протекают только такие процессы, которые приводят ее в состояние, не изменяющееся в дальнейшем с течением времени. Такое состояние системы называется тепловым равновесием. Оно может достигаться в системе и тогда, когда она не является изолированной, но находится в неизменных внешних условиях.

Хорошо известный пример: тепло всегда переходит от горячего тела к холодному, пока температуры обеих тел не станут одинаковыми и не установится тепловое равновесие. Однако понятие теплового равновесия значительно сложнее.

С точки зрения кинетической теории состояние теплового равновесия возникает как результат равенства скоростей прямого и обратного процессов (например, равенства скоростей испарения и конденсации в замкнутом сосуде с жидкостью).

Следует подчеркнуть, что равенство это выполняется лишь в среднем (для не слишком малых промежутков времени и не слишком малых объемов): при переходе к малым временам и малым объемам наблюдаются отклонения от теплового равновесия, или флуктуации, обусловленные неточным совпадением скоростей противоположно направленных элементарных процессов в каждый данный момент.

Состояние теплового равновесия устойчиво. Понятие теплового равновесия применимо не только к выравниванию температуры вследствие переноса тепла, к фазовым превращениям, к химическим реакциям, но и к любым явлениям природы - физическим, химическим, биологическим, космическим: любая система при неизменных внешних условиях с течением времени всегда приходит в состояние теплового равновесия и никогда самопроизвольно из него не выходит.

Термодинамики устанавливает критерии теплового равновесия. Американский физик Дж.У.Гиббс, один из создателей классической и статистической термодинамики, придумал для расчета равновесий метод термодинамических потенциалов, или характеристических функций.

Согласно Гиббсу, существуют такие функции, которые в состоянии теплового равновесия достигают минимума. Например, если процесс происходит при заданных температуре и давлении, то в состоянии теплового равновесия минимума достигает свободная энергия Гиббса; в теплоизолированной системе, находящейся при постоянном объеме, - внутренняя энергия.

Энергия, температура, энтропия

Немецкий физик Р.Клаузиус ввел функцию S, которую он назвал энтропией и сформулировал второй закон термодинамики (1865): “При самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает”.

Вот несколько равноценных формулировок второго начала термодинамики:

1) невозможно построить вечный двигатель второго рода, то есть машину, которая работает за счет тепла окружающей среды;

2) работу можно получить лишь выравнивая перепады каких-либо параметров системы (температуры, давления, электрического потенциала);

3) в замкнутой (то есть не получающей энергии извне) системе прирост энтропии всегда положителен;

4) все самопроизвольно протекающие процессы в замкнутых системах идут в сторону наиболее вероятного состояния системы.

Австрийский физик Л.Больцман открыл физический смысл энтропии и причины ее роста в изолированных системах: энтропия - мера беспорядка в системе. Полный порядок соответствует минимуму энтропии; любой беспорядок увеличивает ее. Максимальная энтропия соответствует полному хаосу. Энтропия жидкости больше, чем твердого тела; а энтропия газа больше чем энтропия жидкости.

Больцман впервые ввел понятие термодинамической “вероятности состояния системы”. Всякая система, состоящая из очень большого числа частиц, будет переходить от состояний менее вероятных к состояниям более вероятным, осуществляющимся большим числом способов. Связь между энтропией S и числом способов реализации данного состояния (термодинамической вероятностью) P дает формула Больцмана: S=klnP+const, где - постоянная Больцмана. Или S=klnW. Читается эта формула так: энтропия замкнутой системы прямо пропорциональна натуральному логарифму термодинамической вероятности состояния системы.

Когда энтропия системы достигает максимума, то никакие процессы в ней невозможны. Но при этом необходимо различать микропроцессы и макропроцессы. В природе необратимы все макроскопические процессы, они протекают в направлении возрастания энтропии. Необратимым является такой процесс, который в обратном направлении может протекать только как одно из звеньев более сложного процесса.

Одному и тому же макросостоянию может соответствовать множество микросостояний, которые с течением времени непрерывно сменяют друг друга, хотя на макроуровне может не наблюдаться никаких изменений. Действие закона возрастания энтропии при протекании процессов в замкнутых системах проявляется только на макроуровне.

Энтропия, как и энергия, - функция состояния системы. Энергия проявляется в работе. Энергия как функция состояния системы характеризуется определенными координатами, а работа равна разности энергий системы при переходе ее из одного состояния в другое.

В соответствии с законом сохранения энергии все формы движения материи могут переходить одна в другую. Но существуют “ловушки”, в которых различные виды движения материи превращаются в тепловое движение -трение, электрическое сопротивление, теплопроводность. А это превращение необратимо. В конце концов вся энергия системы превращается в энергию теплового движения и рассеивается в окружающем пространстве, а энтропия системы достигает максимума.

Энергия и энтропия всегда рядом. Энергия дает жизнь каждому листику, травинке, движение облакам, рекам, ветру. А энтропия? Если бы ее не было, все процессы в мире стали бы обратимыми. Книга соскользнет на пол и расползется на волокна, раскрутятся гайки и винты, на нас обрушится какофония звуков, которую произведут все происшедшие на Земле удары грома, выстрелы, взрывы, музыка, речь людей... В таком мире все виды движения материи будут долго превращаться друг в друга без потерь, но как бы мы прожили в этом мире?

Ближний и дальний порядки в природе

Ближний порядок - относительно упорядоченное расположение соседних частиц внутри малых объемов вещества. Дальний порядок - регулярное периодическое расположение частиц вещества по всему занимаемому им объему.

Строгое определение порядка и беспорядка математики дали лишь где-то в начале 60-х годов ХХ века.

Сравним две записи:

1) 1010101010101010101010101010101010101010

2) 1100001101010000001110101000001110011001

Для записи первого числа достаточно сказать: повтори набор 10 двадцать раз, для записи второго нужно продиктовать все 40 цифр.

Степень беспорядка может быть определена объемом информации, которую надо сообщить для записи числа.

3) 000011100000001111111111000000011111100000000

Данная запись характеризуется микроскопическим беспорядком (последовательности цифр чередуются как попало), но макроскопическим порядком (часто встречаются длинные последовательности нулей и длинные последовательности единиц).

Тело или система с идеальным макроскопическим беспорядком, в котором все направления равноценны, называется изотропным.

Тело, в котором разные направления неравноценны, называют анизотропным.

Распределение молекул в газах является примером осуществляющегося в природе полного, совершенного беспорядка в расположении и движении частиц.

ХасХс (гр.) - полный беспорядок. Хдаос - в древнегреческой мифологии бездна, наполненная мраком и туманом, из которого произошло все существующее.

Микропорядок и макропорядок. Ближний и дальний порядок

Модель 1: мешки с картошкой, уложенные штабелями. Центры мешков образуют правильную трехмерную решетку, а внутри мешка полный беспорядок. Макроскопический дальний порядок есть, микроскопического нет.

Модель 2: мешки с картошкой свалены как угодно, у каждого в среднем двенадцать соседей. От дальнего макроскопического порядка мы избавились, а ближний остался.

Деление порядка на ближний и дальний, на макроскопический и микроскопический могут сочетаться, как угодно, и все случаи действительно встречаются в мире молекул и кристаллов.

Особенно интересны такие сочетания в мире живого, где мы находим случаи отсутствия микроскопического порядка и наличия дальнего макроскопического. Так обстоит дело в структуре мышц, в молекулах ДНК.

Если молекулы предоставлены сами себе и на них не действуют мешающие их тепловому движению силы, то наиболее вероятным является беспорядочное распределение молекул. Беспорядочным является такое состояние, когда средние скорости молекул во всех точках пространства одинаковы.

В любой области знаний мы сталкиваемся с проблемами порядка и беспорядка (информация, генетика, суждения людей...) Например макроскопическим порядком обладают суждения людей о спортивных достижениях (измеряемые в баллах), о понятиях добра и красоты...

Фазовые переходы и симметрия

Переходы вещества из одной фазы в другую при изменении состояния системы называют фазовыми превращениями. Фаза - совокупность телесных объектов с определенным химическим составом и термодинамическими свойствами, отделенная от других фаз поверхностью раздела. Или иначе: фаза - это однородная часть неоднородной системы.

Фазовый переход - переход вещества из одной термодинамической фазы в другую при изменении внешних условий.

Фазовый переход первого рода - сопровождается скачкообразным изменением внутренней энергии и плотности.

Фазовый переход второго рода - отсутствует скачкообразное изменение внутренней энергии или плотности.

Фазовые переходы второго рода связаны с изменением порядка. Вблизи температуры фазового перехода степень порядка сколь угодно близка к нулю. Поэтому фазовый переход второго рода не требует затрат энергии.

При фазовых переходах второго рода происходит изменение внутренней симметрии тел. Примерами таких переходов могут служить: 1) переход металла в сверхпроводящее состояние; 2) переходы ферромагнетик - парамагнетик; 3) переход жидкого гелия в свертекучее состояние.

Необратимость - неустранимое свойство реальности. Стрела времени

Мир - это непрерывно хаотически движущиеся атомы и молекулы. Однако как это связать с гармонией и красотой окружающего нас макромира?

Джон Холл (XVII век): “Если то, что мы называем Вселенной, случайно зародилось из атомов, которые неутомимы в своем вихревом движении, то как случилось, что ты прекрасна, а я влюблен?”

Чем объясняется направленность процессов в окружающем мире? Закон, при помощи которого можно предсказать направление эволюции какой-либо физической системы, называется вторым началом термодинамики. Одна из его формулировок гласит: замкнутая система сама по себе, т.е. самопроизвольно, переходит из менее вероятного состояния в более вероятное.

Закон возрастания энтропии можно сформулировать следующим образом: во всех замкнутых системах энтропия никогда не убывает, она либо остается постоянной, либо возрастает. Соответственно этим двум возможностям все процессы, которые могут происходить с телами, делятся на обратимые и необратимые. Первые из них могут протекать как в прямом, так и в обратном направлениях, поскольку энтропия при этом не меняется; для вторых - это невозможно, поскольку связано с уменьшением энтропии.

По мнению ряда авторов, наблюдаемое в лабораторных экспериментах направление времени тесно связано с направлением времени, характерным для Вселенной в целом. Возможно, следует предположить существование некоторого взаимодействия (может быть, гравитации), наличие которого вообще делает в принципе невозможным строгую изоляцию системы, и именно это взаимодействие “диктует” направление времени во всех частях Вселенной (Ф.Кемпфер, 1972).

Развитие материальных систем во Вселенной происходит необратимым образом - от прошлого к будущему. Это означает, что течение времени асимметрично: оно направлено от прошлого (через настоящее) к будущему, причина всегда предшествует следствию, “стрела времени” всегда устремлена в будущее.

Не следует слишком упрощенно понимать связь стрелы времени с космологическими процессами: стрела времени не будет изменять свое направление на обратное, если Метагалактика когда-нибудь перестанет расширяться и начнет сжиматься. Если наблюдатели могли бы только по часам судить о происходящих во Вселенной процессах, то они, вероятно, даже не заметили бы, что расширение Метагалактики сменилось сжатием.

Литература

1. Аронов Р.А. Квантовый парадокс Зенона/ Природа, 1992, 12

2. Ильин В.Г., Илясов Ю.П., Кузьмин А.Д. Пульсары - независимые стандарты времени/ Природа, 1990, 2

3. Киржниц Д.А. Элементарная длина/ Природа, 1991, 10

4. Фролов В.П. Черные дыры, “кротовые норы” и машина времени/ Природа, 1991, 8

5. Хокинг С. Стрела времени/ Природа, 1990, 1

Тема 1.3. Физика как целое

Иерархия структур природы

Выделяют три крупных структурных уровня организации Вселенной:

- мегамир (Галактики, Метагалактика)

- макромир (человек, окружающая среда, планета)

- микромир (элементарные частицы, атомы, молекулы)

С точки зрения физиков иерархия объектов природы выглядит следующим образом: элементарные частицы - ядра - атомы - молекулы - макротела (кристаллы, жидкости, газы, плазма) - планеты - звезды - галактики -Вселенная. Биологи предлагают следующую иерархию биологических систем: макромолекулы - органоиды - клетки - ткани - органы - системы органов - организмы - популяции - виды - биоценозы - биосфера.

В социологи можно выделить следующие уровни социальной организации: семья - род - племя - нация - цивилизация (?)

Микромир

Элементарные частицы и фундаментальные взаимодействия. В природе существуют качественно различные связанные системы объектов - ядра, атомы, макротела, звездные системы. Существует нечто такое, что скрепляет части системы в целое. Чтобы разрушить систему частично или полностью, нужно затратить энергию. Взаимное влияние частей системы характеризуется энергией взаимодействия, или просто взаимодействием.

В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу основных фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному.

Гравитационное взаимодействие (тяготение). Притяжение тел к Земле, существование солнечной системы и галактик обусловлено действием сил тяготения, или, иначе, гравитационными взаимодействиями.

Эти взаимодействия универсальны, т.е. применимы к любым микромакрообъектам. Однако они существенны лишь для астрономических объектов, для формирования структуры и эволюции Вселенной как целого. Гравитационные взаимодействия очень быстро ослабевают с уменьшением массы объектов и практически не играют роли для ядерных и атомных систем.

Источником гравитации являются массы тел, а дальность гравитационного взаимодействия неограниченна.

Закон всемирного тяготения (Ньютон): гравитационная сила, с которой притягиваются друг к другу две частицы (тела), обратно пропорциональна квадрату расстояния между их центрами и прямо пропорциональна произведению их масс.

где G - гравитационная постоянная =

Электромагнитные взаимодействия. Ими обусловлены связи в атомах, молекулах и обычных макротелах. Радиус их действия также не ограничен, но оно преобладает внутри вещества: определяет химические связи, излучение света, намагничивание, словом, все явления, наблюдаемые в молекулах и атомах. Гравитационное взаимодействие здесь не сказывается из-за его малой силы, а слабое и сильное - из-за их короткого радиуса действия. Энергия ионизации атома, т.е. энергия отрыва электрона от ядра определяет значение электромагнитного взаимодействия, существующего в атоме.

Сильные (ядерные) взаимодействия. Наличие в ядрах одинаково заряженных протонов и нейтральных частиц говорит о том, что должны существовать взаимодействия, которые гораздо интенсивнее электромагнитных (в сотни раз), ибо иначе ядро не могло бы образоваться. Эти взаимодействия проявляются лишь в пределах ядра на расстояниях менее 10-13 см. Сильное взаимодействие скрепляет нуклоны в ядре и кварки внутри нуклонов.

Нуклон-нуклонная сила не является “чистой” силой притяжения. На расстояниях порядка 10-14 см она становится силой отталкивания. Мы до сих пор не знаем природы этих сил во всех деталях; их разгадка является одной из главных проблем современной ядерной физики.

Слабые взаимодействия. Слабое взаимодействие существует между любыми парами элементарных части. Радиус их действия не больше, чем у ядерных сил, а может быть, и равен нулю.

Обнаруженная в 1896 году Беккерелем радиоактивность была первым сигналом о наличии слабых взаимодействий. Оказалось, что слабое взаимодействие принимает участие в некоторых термоядерных реакциях, поддерживающих излучение Солнца и других звезд.

Оно является единственным взаимодействием, существующим между электроном и нейтрино

Это взаимодействие виртуально (на короткое время) превращает каждый протон ядра в нейтрон, позитрон и нейтрино, а каждый нейтрон - в протон, электрон и антинейтрино.

Слабое взаимодействие вызывает переходы между разными типами кварков, бета-распады нуклонов в ядрах. При бета-распаде один из трех кварков, составляющих нуклон, переходит в кварк другого типа и излучает электроны и антинейтрино.

Нейтроны имеют массу, превышающую приблизительно на 1 МэВ сумму масс протона и электрона. Поэтому свободный нейтрон распадается на протон, электрон и антинейтрино с выделением энергии приблизительно 1 МэВ. Время жизни свободного нейтрона примерно 10 мин.

Аналогичное событие происходит с мюоном - он распадается на электрон, нейтрино и антинейтрино. Перед тем, как распасться, мюон живет около 10-6 с.

40 лет понадобилось физикам, чтобы прийти к убеждению, что слабое взаимодействие переносится сверхмассивными частицами - в 100 раз тяжелее протона. Эти частицы имеют спин 1 и называются векторными бозонами (открыты в 1983 г.)

Значительное число медленных распадов элементарных частиц сопровождается излучением нейтрино. Эта частица крайне слабо взаимодействует с веществом. Длина пути между двумя столкновениями нейтрино с частицами вещества в среде с обычной плотностью - 1017 км. Следовательно, Земля для нейтрино совершенно прозрачна.

По своей величине основные взаимодействия располагаются в следующем порядке: сильное (ядерное) - электрическое - слабое - гравитационное.

Физики пытаются уловить связь между силами природы. Выяснилось, что электромагнитное и слабое взаимодействия связаны друг с другом. Электромагнитное поле представляет собой часть более общего электрослабого поля, состоящего из нескольких компонент. Элементарные частицы - кварки и лептоны - излучают и поглощают кванты электрослабого поля, которыми являются фотоны и бозоны.

Радиус действия слабых сил см. На этом масштабе они объединяются с электромагнитными силами, а на меньших масштабах электрослабые поля неразделимы.

Дальше начинается область гипотез. Согласно большинству из них, электрослабые взаимодействия объединяются с сильными на масштабе см. Трудно представить себе эксперименты на таких малых масштабах. Однако решающий эксперимент для проверки этого, так называемого Великого объединения может быть проведен в ближайшие годы. Дело в том, что почти неизбежным следствием Великого объединения является нестабильность протона. Это процесс, при котором в нуклонах происходят превращения кварков в антикварки и лептоны.

Вероятности таких превращений очень малы, иначе просто не существовали бы ни мы сами, ни окружающая нас ядерная материя - она бы рассыпалась на более легкие частицы. По теоретическим оценкам время жизни протона должно составлять лет. Это намного больше, чем возраст Вселенной. Но даже такие крайне редкие события можно попытаться обнаружить.

Другое вероятное следствие Великого объединения - это существование монополей, одиночных магнитных зарядов. Их масса должна быть фантастически велика. Опыты по обнаружению космических монополей сейчас ведутся.

Эйнштейн предполагал возможность объединения электромагнитного взаимодействия с гравитационным. Теперь это будет Суперобъединение - все четыре силы природы сводятся к одной, исходя из какого-то фундаментального принципа. В последнее время все чаще высказывается мысль, что этот принцип геометрический, как и принцип общей теории относительности.

Протон. Стабильная частица, ядро атома водорода. Вместе с нейтронами протоны образуют атомные ядра всех элементов, причем число протонов в ядре определяет атомный номер элемента. Протон имеет положительный электрический заряд в точности равный абсолютной величине заряда электрона. Протон в 1836 раз тяжелее электрона. С современной точки зрения протон не является истинно элементарной частицей: он состоит из трех кварков. Эксперименты по рассеянию электронов на протонах свидетельствуют о наличии внутри протонов точечных рассеивающих центров. Размеры протона около см. Протон напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц. Время жизни протона лет, что во много раз больше возраста Вселенной (лет). Поэтому протон практически стабилен, что сделало возможным образование химических элементов и в конечном итоге появление разумной жизни.

Нейтрон. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд равен нулю. Состоит из трех кварков. Устойчив лишь в составе стабильных атомных ядер. Свободный нейтрон - нестабильная частица, распадающаяся на протон, электрон и электронное антинейтрино. Время жизни нейтрона около 15 мин. Они возникают в природе или получаются в лаборатории в результате ядерных реакций. Масса нейтрона 1840. Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. Они играют важную роль в ядерной энергетике.

Кварки вначале рассматривались как чисто математические структурные элементы, открывающие возможность удобного описания адронов. Эксперименты выявили наличие внутри нуклона точечных заряженных образований, которые отождествили с кварками.

Название было заимствовано М.Гелл-Маном в одном из романов Дж. Джойса. В переводе с немецкого “кварк” - “творог”, но в романе это слово означает нечто двусмысленное и таинственное; герою снится сон, где чайки кричат: ”Три кварка для мистера Марка”. Термин вошел в научный обиход, возможно, потому, что соответствовал двусмысленной и таинственной роли кварков в физике.

Кварк - частица со спином 1/2 и дробным электрическим зарядом. Помимо спина кварки имеют еще две внутренние степени свободы - “аромат” и “цвет”. Каждый кварк может находиться в одном из трех “цветовых” состояний, которые условно называют “красным”, “синим” и “желтым”. Все три состояния одинаково поглощают и испускают кванты света. Массы всех цветовых состояний также строго одинаковы.

“Ароматов” известно пять и предполагается существование шестого: truth, beauty, charmed, strange, down, up (правдивый или истинный, прелестный или красивый, очарованный, странный, низ, верх). Свойства кварков с различными “ароматами” различны.

Каждый кварк может быть окрашен в любой из трех цветов, иметь по два спиновых состояния +1/2 и по два зарядовых состояния. Это дает 6x3x2x2, т.е. 72 варианта.

Обычное вещество состоит из легчайших u- и d-кварков, входящих в состав нуклонов ядер. Более тяжелые кварки рождаются искусственно.

Кварки участвуют во всех известных взаимодействиях - гравитационных, слабых, электромагнитных и сильных. Неизвестно, из чего состоят сами кварки; возможно, они элементарны. Их собственный размер, во всяком случае, меньше .

В свободном состоянии кварки до сих не наблюдались, и есть теоретические соображения, которые указывают на невозможность таких состояний для кварков.

Лептоны - частицы, не участвующие в сильном взаимодействии. Лептоны как и кварки, рассматривают как бесструктурные точечные частицы, как истинно элементарные.

Электрон - отрицательно заряженная элементарная частица, носитель наименьшей известной сейчас массы, и наименьшего электрического заряда в природе. Заряд электрона примерно равен Масса электрона примерно

Электрон стабилен, время его жизни не менее лет. Электроны участвуют в электромагнитных, слабых и гравитационных взаимодействиях.

Нейтрино - электрически нейтральная частица. Вероятно существует не более 4-6 типов нейтрино. Масса покоя нейтрино обычно считается равной нулю, как у фотона. Но в отличие от фотона для этого нет серьезных оснований. Японские и американские физики определили массу покоя электронного нейтрино в пределах 11 - 13,4 эВ/с2.

Нейтрино столь же распространенная частица как и фотон. Нейтрино образуется в слабых распадах атомных ядер и элементарных частиц. Мощные потоки нейтрино испускаются звездами в результате происходящих в их недрах термоядерных реакций. Предполагается, что нейтрино в изобилии рождаются при гравитационном коллапсе звезд. Наконец, все пространство заполнено нейтринным газом, оставшимся от ранних этапов развития Вселенной.

К частицам - переносчикам взаимодействий относятся: глюоны, фотоны и массивные промежуточные бозоны.

Взаимодействия элементарных частиц представляются как своеобразная игра в мячики: перебросом глюонами осуществляется связь между кварками, обмен фотонами происходит в актах взаимодействия электрически заряженных частиц, массивные промежуточные бозоны ответственны за медленные распады частиц и за чрезвычайно слабое взаимодействие всех типов нейтрино с веществом.

Фотон - квант электромагнитного поля, элементарная частица с нулевой массой покоя и спином, равным единице. Масса покоя, равная нулю, означает, что фотон невозможно ни остановить, ни замедлить. Независимо от своей энергии он обречен двигаться с фундаментальной скоростью c.

Фотон - наиболее распространенная из всех элементарных частиц. Он встречается и в потоках видимого света, и в рентгеновском излучении, и в виде радиоволн, и в лазерных импульсах.

В 1964 г. американские радиоастрономы А.Пензиас и Р.Вильсон обнаружили, что мировое пространство заполнено миллиметровыми радиоволнами, которые можно рассматривать как холодный фотонный газ при температуре 2,7 K. По современным представлениям, это излучение (его называют реликтовым) возникло на ранних стадиях развития Вселенной. Средняя плотность реликтовых фотонов составляет около 500 в 1 см3. Интересно, что плотность протонов во Вселенной в среднем не более одного на 1 м3. Таким образом, во Вселенной фотоны встречаются в миллиард раз чаще, чем протоны.

Античастицы. К настоящему времени экспериментально обнаружены античастицы почти всех элементарных частиц. Частица и соответствующая античастица имеют одинаковые времена жизни, одинаковые массы, их электрические заряды равны, но противоположны по знаку. Самым характерным свойством пары частица-античастица является способность аннигилировать (самоуничтожаться) при встрече с превращением в частицы другого рода.

Античастицы могут собираться в антивещество. Так в Серпухове на ускорителе получен антигелий-3, у которого ядро состоит из двух антипротонов и одного антинейтрона и окружено оболочкой из пары позитронов.

Частицы и соответствующие им античастицы одинаково взаимодействуют с полем тяготения; это указывает на отсутствие “антигравитации”.

Несмотря на микроскопическую симметрию между частицами и античастицами, во Вселенной до сих пор не обнаружены области со сколько-нибудь заметным содержанием антивещества. Свидетельством присутствия антивещества во Вселенной было бы мощное аннигиляционное излучение, приходящее из областей соприкосновения вещества с антивеществом. Ведь аннигиляция только 1 г вещества и антивещества приводит к выделению Дж энергии, что эквивалентно взрыву средней атомной бомбы в 10 килотонн.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


© 2008
Полное или частичном использовании материалов
запрещено.