РУБРИКИ

Ихтиология

 РЕКОМЕНДУЕМ

Главная

Валютные отношения

Ветеринария

Военная кафедра

География

Геодезия

Геология

Астрономия и космонавтика

Банковское биржевое дело

Безопасность жизнедеятельности

Биология и естествознание

Бухгалтерский учет и аудит

Военное дело и гражд. оборона

Кибернетика

Коммуникации и связь

Косметология

Криминалистика

Макроэкономика экономическая

Маркетинг

Международные экономические и

Менеджмент

Микроэкономика экономика

ПОДПИСАТЬСЯ

Рассылка

ПОИСК

Ихтиология

p align="left">· Порционность икрометания характерна главным образом для рыб тропиков и субтропиков, в умеренных широтах их меньше, в Арктике - почти нет.

· Существуют рыбы, которые хотя и не имеют резко выраженного порционного икрометания, но нерестовый период их (одной особи) растягивается на несколько дней, т. е. икра также выметывается в несколько приемов (лещ, иногда карп). Некоторые рыбы в южной части своего ареала нерестуют порционно, в северной - единовременно (лещ, карп).

· Порционное икрометание способствует увеличению плодовитости рыб и обеспеченности потомства пищей, а также лучшей выживаемости молоди в неблагоприятных условиях обитания. Например, в водоемах с колеблющимся уровнем значительно больше видов рыб с порционным нерестом.

· Выметанные икринки у подавляющего большинства рыб шаровидны, но есть и овальные (хамса), сигаровидные (бычки, ротан) и даже каплевидные и цилиндрические (некоторые бычки). Окраска икринок у большинства видов желтоватая, оранжевая разных оттенков, у осетровых - черная, у бычков - зеленая. Желтоватый и оранжевый цвет обусловлен присутствием каротиноидов. Размеры икринок сильно варьируют: у некоторых сельдей, камбал икринки имеют менее 1 мм в диаметре, у акул - до 8-9 см и выше, причем они увеличиваются по мере продвижения вида к северу и на глубины.

Величина икринок, мм 

· Плащеносная акула Chlamydoselachus anguineus 90 - 97

· Ручьевая форель Salmo trutta morpha fario 4,0 - 6,5

· Черноморский шпрот Sprattus sprattus 0,9 - 1,15

· Сельдь-черноспинка Caspialosa kessleri 2,87 - 3,93

· Карп Cyprinus carpio 0,9 - 1,5

· Линь Tinca tinca 1,0 - 1,2

· Чехонь Pelecus cultratus 3,8 - 5,9

· Речная камбала Pleuronectes flesus 0,78 - 1,3

· Окунь Perca fluviatilis 2,0 - 2,5

· Судак Lucioperca lucioperca 1,2 - 1,4

· Щука Esox lucius 2,5 - 3,0

· Икринки, выметанные и развивающиеся в разных экологических условиях, обладают рядом особенностей, которые способствуют их приспособленности к среде, (рис. 34). В толще воды развиваются плавающие, или пелагические, икринки, на дне или на субстрате -донные, или демерсальные.

· У пелагических икринок, развивающихся в толще воды, увеличение плавучести обеспечивается рядом приспособлений. К ним относятся: оводнение желтка (в морских пелагических икринках содержание воды доходит до 85-97%, благодаря чему они легче морской воды, тогда как в донных - до 60-76%), увеличение перивителлинового пространства за счет наличия в желтке жировых капель (многие сельди, камбалы) или образование выростов, облегчающих удерживание икринки в толще воды (сайра и др. ).

· У чехони, дальневосточных растительноядных рыб, проходных сельдей икринки полупелагические; они развиваются в толще воды, на течении, в реке, но в стоячей воде тонут.

· Икринки, откладываемые на субстрат (вегетирующие или отмершие растения, камни, коряги и т. д. ), часто обладают клейкими оболочками (осетровые, атлантическая и тихоокеанская сельди, карп, карась, рыбец и т. д. ) или снабжены нитевидными или крючковидными отростками, которыми они прикрепляются к субстрату. Икринки часто откладываются компактно, и кладки имеют характерную форму. Например, у окуня икринки окружены вязким студенистым веществом, кладки имеют вид длинных (2-3 м) лент (рис. 35). Однако они могут и не прикрепляться к субстрату (лососевые, налим). Донные икринки свойственны подавляющему большинству пресноводных рыб или морским, нерестующим в прибрежной зоне. Количество желтка и плазмы в икринках разных видов рыб не одинаково. По их соотношению яйца костистых рыб делят на олигоплазматические (содержащие мало плазмы и много желтка) и полиплазматические (богатые плазмой и бедные желтком).

· Резервный материал для питания зародыша - желток овоцита -состоит преимущественно из белков, основная масса которых представлена липофосфопротеидами (ихтулин) и небольшим количеством альбумина, и липидов (главным образом фосфатидов, прежде всего лецитина, а также холестерина); имеется небольшое количество полисахаридов и нейтральных жиров.

· У многих рыб цитоплазма овоцита содержит жировые капли, состоящие преимущественно из нейтральных жиров - глицеридов. Яйца рыб характеризуются большим количеством воды. Сильно колеблется в них содержание белков (от 12-14 до 29-30% от сырой массы) и жиров (от 1-2 до 22% сырой массы). При этом количество белков преобладает над количеством жиров (отношение белки/жиры, например у пеляди составляет 1,17, у форели - 3,25, у сазана - 4,15, а у щуки и судака - 21,19-21,66).

· Различна и калорийность икры, например у осетра и лосося 25522-25941 Дж/г, у барабули 16 318 Дж/г сухого вещества. Содержание углеводов в яйцах рыб незначительно: глыбки гликогена обнаружены (цитохимически) у осетровых, лосося, пеляди, карпа.

· Таким образом, главным источником энергии при развитии зародыша являются белки, за счет которых покрывается до 70% расходуемой энергии. Жиры, в отличие от жиров яиц птиц, расходуются в меньшей степени. При этом в пелагических икринках запас энергетических веществ меньше, в донных - больше.

· Зрелый сперматозоид представляет собой клетку с малым количеством плазмы. В нем различают головку, среднюю часть и хвост (рис. 36). Форма головки различна: в виде шара, яйца, желудя (у большинства костистых рыб), палочки (у осетровых и некоторых костистых), копья (у двоякодышащих), цилиндра (у акуловых, кистепёрых). В головке помещается ядро. Впереди ядра у акулообразных, осетровых и некоторых других рыб располагается акросома; у костистых акросомы нет. Ядерная часть головки сперматозоида состоит преимущественно из дезоксирибонуклеопротеида (нейтральная соль ДНК с основным белком - протамином) и небольшого количества РНК. Концентрация ДНК в головке (ядре) составляет 38,1% (карп), 48,4% (семга) и отражает количество ДНК в гаплоидном наборе хромосом. Протамины состоят из 6-8 аминокислот, среди которых преобладает аргинин. В средней части сперматозоидов обнаружены митохондрии, играющие основную роль в снабжении клетки энергией. В хвостовой части выявлены белки, лецитин, жиры и холестерин. Сперматозоиды большинства костистых рыб имеют общую длину 40-60 мкм (головка 2-3мкм).

· Сперма, выделяемая самцом, состоит из сперматозоидов, погруженных в спермиальную жидкость, сходную по составу с физиологическим раствором. В момент выхода из организма сперматозоиды ещё неподвижны, обмен их понижен.

· У одного и того же самца сперматозоиды качественно неодинаковы. Прежде всего они различаются по величине: в эякуляте при помощи центрифугирования можно выделить три группы сперматозоидов - мелких (легких), крупных (тяжелых), промежуточных (средних). Они различаются и по биологическим свойствам, в частности по характеру гамет: среди крупных сперматозоидов в большом количестве встречаются X-гаметы, среди мелких - Y-гаметы. Вследствие этого из икры, оплодотворенной крупными сперматозоидами, рождаются преимущественно самки, а мелкими - самцы.

· Эти данные используют для разработки направленного формирования пола у рыб, которое имеет важное значение в рыбоводстве. Количество спермы, которое единовременно выделяет самец при нересте, и концентрация эякулятов различны у разных видов (табл. 6). Оно зависит от комплекса внутренних и внешних факторов: размеров, возраста и состояния самцов, условий нереста - течений, температуры, соотношения самок и самцов на нерестилищах и т. д.

· В спермиальной жидкости сперматозоиды неподвижны. При соприкосновении с водой их обмен резко возрастает, поглощение кислорода увеличивается больше чем вдвое, содержание АТФ - больше чем втрое; сперматозоиды активируются и начинают бурно двигаться со скоростью, наблюдаемой у сперматозоидов млекопитающих (164-330 мкм/с). Встретив икринки, они проникают в них через микропиле, после чего происходит оплодотворение. Однако в воде сперматозоиды недолговечны. Энергетические ресурсы их иссякают, первоначальное поступательное движение замедляется, становится колебательным, затем прекращается и они погибают. Продолжительность подвижности сперматозоидов колеблется в зависимости от солености среды, в которой проходит нерест, и температуры; в соленой воде она значительно дольше: до нескольких суток у тихоокеанской сельди Clupea harengus pallasi, в пресной воде у большинства рыб - карповых, лососевых, окуневых - не больше 1-3 мин.

Таблица 6 Характеристика спермы разных видов рыб (по Казакову, 1978, с сокращениями) .

Вид рыбы

Единовремен ный объём спермы, см3

Концентрация сперматозоидов, млн. /мм

Продолжительность активности сперматозоидов, с

общая

поступательного движения

Радужная форель Пелядь Карп Белый амур

1,0-23,0 0,2-3,2 2,9-12,5 20-30

20,4 7,6 16,5 33,1

60-105 - - 35

10-56 27-65 70-87 15-53

· Между подвижностью сперматозоидов и их оплодотворяющей способностью наблюдается прямая зависимость: уменьшение скорости движения сопровождается падением процента оплодотворённости икры. При этом имеет значение поступательное движение (колебательное движение не дает возможности сперматозоиду проникнуть в икринку).

· В эякуляте без добавления воды неподвижные сперматозоиды долго сохраняют оплодотворяющую способность - до нескольких часов и даже суток. На этом основаны хранение и перевозка “сухой” спермы.

· Рыбы почти всех видов раздельнополы. Органический гермафродитизм свойствен миксинам. Среди костистых рыб обычно являются гермафродитами лишь морские окуни Serranus и морские караси Sparidae. Изредка гермафродиты появляются во многих семействах как среди морских, так и пресноводных форм (у сельдевых, лососевых, щуковых, карповых, окуневых и др. ). При этом, например, у кеты и кефали в гонадах чередуются участки яичников и семенников. Крайне редки сообщения о гермафродитизме карпа. В одном из таких случаев описано выделение гермафродитом одновременно икры и спермы. При этом самооплодотворение сопровождалось значительным отходом икры (развилось 29% зародышей), тогда как при осеменении спермой гермафродита икры другой самки развивалось 98% икринок.

· У рыб может происходить изменение, превращение (реверсия) пола. Например, молодь радужной форели на ранних стадиях (в возрасте 135-160 дней), имевшая в гонадах массу женских половых клеток, в дальнейшем развивалась в самцов. У большинства пресноводных рыб половые железы во время закладки индифферентны в отношении половой принадлежности, они как бы потенциально двуполы. Пол такой интерсексуальной особи определяется при дальнейшем развитии.

· Но превращение пола может наблюдаться и у взрослых особей. Известны случаи, когда у зубастых карпов Cyprinodontoidae половозрелые, уже ранее нерестовавшие самки вдруг превращались в самцов и становились способными оплодотворять икру; у некоторых рыб в течение жизни перестройка пола наблюдается неоднократно.

· У рыб имеет место избирательность оплодотворения. Поэтому использование при осеменении икры спермы двух (или более) особей повышает оплодотворяемость икры.

· Рыбы размножаются в самых различных условиях. В связи с особенностями, строения, размножения на различном нерестовом субстрате и развития рыб выделяют следующие экологические группы: Литофилы - размножаются на каменистом грунте, обычно в реках на течении или на дне олиготрофных озер или прибрежных участков морей, обычно в благоприятных условиях кислородного режима. Это осетры, лососи, подусты и др.

· Фитофилы - размножаются среди растительности, откладывая икру в стоячей или слаботекучей воде на отмершие или вегетирующие растения. При этом кислородные условия сильно варьируют. К этой группе принадлежат щука, сазан, лещ, плотва, окунь и др.

· Псаммофилы - откладывают икру на песок, иногда прикрепляя ее к корешкам растений. Часто оболочки икринок инкрустируются песком. Развиваются обычно в благоприятных условиях дыхания. К этой группе принадлежат пескари, некоторые гольцы и др.

· Пелагофилы - выметывают икру в толщу воды. Икра и свободные эмбрионы развиваются, свободно плавая в толще воды, обычно в благоприятных для дыхания условиях. В эту группу входят почти все виды сельдей, тресковых, камбал, некоторые карповые (чехонь, толстолобики, амуры и др. ).

· Остракофилы - откладывают икру внутрь мантийной полость моллюсков и иногда под панцири крабов и других животных. Икра обычно развивается в не особенно благоприятных условиях дыхания. Это некоторые пескари, горчаки и др.

· Эта классификация охватывает не всех рыб, имеются промежуточные формы: рыбец может нерестовать и на растительности, и на камнях, т. е. как фитофильная и литофильная рыба.

· В зависимости от кислородного режима нерестилищ, при котором обычно инкубируется икра, развиваются “дыхательные” пигменты - каротиноиды желтоватого и красноватого цвета. Чем хуже условия дыхания, тем сильнее пигментирована икра. Поэтому самая яркая окраска присуща икре фитофильных и литофильных рыб, а самая светлая - икре пелагофилов.

· Большинство рыб не заботится о потомстве. Нередки случаи, когда родители даже поедают собственную икру и особенно молодь.

· Каннибализм встречается у гамбузии, наваги, даже карпа. Поэтому целесообразно в целях сохранения молоди вылавливать производителей из нерестовых прудов. Однако немало видов рыб, заботящихся о потомстве. При этом охрана потомства в большинстве случаев выпадает на долю самцов.

· Примеры заботы о потомстве интересны и разнообразны: колюшка (самец) строит гнездо из кусочков травинок, склеиваемых выделениями почек. Гнездо имеет сначала два отверстия, а после наполнения его икрой (несколькими самками) самец закрывает одно отверстие и остается охранять его, аэрируя воду движениями плавников. После выклева молоди самец в течение нескольких дней следит за тем, чтобы она находилась в гнезде и возвращает туда выплывающих, захватывая их ртом (рис. 37). Тиляпии вынашивают икру во рту (самки) и некоторое время после выклева забирают молодь в рот при опасности. У морской иглы и морского конька икра инкубируется в складке или сумке на брюшке самцов. Лабиринтовые рыбки строят гнездо из пены - пузырьков воздуха и слюнообразного секрета. Хотя молодь в гнезде появляется через сутки, самец охраняет его до тех пор, пока рыбки окончательно не оформятся. Вообще постройка гнезд разной сложности встречается у рыб нередко. Форель и лосось выкапывают в грунте несколько ямок, а отложенную икру засыпают песком и гравием движениями хвоста (устраивая так называемые нерестовые бугры). Некоторые бычки, сомы устраивают гнезда из камешков и кусочков растений; пинагор охраняет комок икры, отложенной у полосы прибоя, и вовремя отлива поливает его водой из рта. Судак строит гнездо из кусочков корней или расчищая каменистый участок; он кусает протянутую к гнезду руку, и отогнать его не удается; движением грудных плавников он создает ток воды, смывающий ил с икринок.

· Наиболее совершенной формой заботы о потомстве является живорождение. При этом плодовитость обычно бывает мала -несколько десятков особей. По сути это - яйцеживорождение с задержкой потомства в половых путях самки, до рассасывания желточного мешка. Оно присуще многим акуловым, а среди костисты хрыб - бельдюге Zoarces viviparus, морскому окуню Sebastes marinus, гамбузии Gambusia affinis, гуппи Lebistes reticulatus, меченосцу Xinophorus hellery, из карповых - усачу Barbus viviparus.

Эмбриональное и раннее постэмбриональное развитие рыб

· В первые мгновения после оплодотворения оболочки икринки прилегают к поверхности желтка. Затем кортикальные альвеолы, располагающиеся в поверхностном слое цитоплазмы, лопаются, их содержимое выделяется под оболочку и она отслаивается от желтка. Начинается оводнение (набухание) икринки, в процессе которого между желтком и оболочкой образуется перивителлиновое пространство, заполненное жидкостью. Эта жидкость обеспечивает обмен зародыша и защищает его от воздействия внешней среды.

· Перивителлиновое пространство образуется и в неоплодотворенной икринке после попадания ее в воду. Так как перивителлиновое пространство препятствует проникновению сперматозоидов, то после его образования икринка теряет способность к оплодотворению.

· Внешняя оболочка икринки многих рыб выделяет клейкое вещество, благодаря которому в естественных условиях икринки прилипают к субстрату. После набухания прочность оболочек возрастает. Яйца костистых рыб относятся к телолецитальному типу. В них желток распределен неравномерно: ядро и плазма располагаются на анимальном полюсе, а желток концентрируется в противоположной части клетки на вегетативном полюсе. В результате дробление охватывает не всю клетку, а только бластодиск (неполное, или дискоидальное, дробление, при котором борозды дробления проходят только по бластодиску).

· Внешним признаком развития икринки является скопление плазмы на анимальном полюсе и образование бластодиска. Развитие идёт по общеизвестной схеме: дробление бластодиска (с образованием сначала крупноклеточной, затем мелкоклеточной морулы); появление бластулы, внутри которой имеется первичная полость тела - бластоцель; в результате продолжающегося размножения клеток - наступление гаструляции, в процессе которой клетки анимального полюса надвигаются на желток (обрастание желтка), образуется два зародышевых листка (экто и энтодерма); полость гаструлы представляет собой первичную полость кишечника. Затем между двумя эмбриональными пластами образуется третий (мезодерма); внутри мезодермы развивается вторичная полость тела, или целом. Далее зародышевые листки дифференцируются на зачатки тканей и органов: из эктодермы формируются покровы (эпидермис), нервная система; из энтодермы - кишечник и связанные с ним органы; из мезодермы -внутренний скелет, мускулатура, соединительнотканный слой кожи, аорта и кардинальные вены, эндокардий сердца и др.

· Эмбриональный период развития рыб не заканчивается выходом зародыша из оболочки. Он продолжается в течение некоторого времени после выклева, пока предличинка, или свободный эмбрион, обладая ещё рядом эмбриональных особенностей строения органов дыхания, кровообращения, пищеварения и других систем, проходит заключительные этапы эмбрионального развития. После того как начинают функционировать жаберная, пищеварительная и другие системы, деятельность эмбриональных органов прекращается и соответственно кончается период эмбрионального развития.

· Следующий период - личиночный - начинается с момента перехода молоди на активное питание внешней пищей. Сначала питание смешанное - остатками желточного мешка и частично внешней пищей, затем полностью экзогенное. Имеются временные личиночные органы (непарная плавниковая кайма, наружные жабры и т. д.), отсутствуют многие органы взрослой рыбы.

· При переходе в следующий период развития - мальковый молодь приобретает форму взрослой рыбы; появляется чешуя, характерные для взрослого органы и функции (например, брюшные плавники и жаберное дыхание через рот), но некоторые органы могут ещё отсутствовать, например каналы боковой линии. Личиночные органы исчезают.

· Для примера рассмотрим развитие карпа в нерестовом пруду (при температуре воды 20-22°С рис. 38).

· В течение первых суток проходят этапы, предшествующие оформлению тела зародыша.

· Образование бластодиска (1-й этап). Начинается сразу после оплодотворения. Примерно через 30 мин в икринках между желтком и наружной оболочкой возникает перивителлиновое пространство, занимающее 3,4-15,4 % диаметра икринки. На анимальном полюсе икринки формируется бластодиск в виде возвышающегося над желтком светлого бугорка.

· Дробление бластодиска (2-й этап). Бластодиск разделяется бороздами дробления на бластомеры.

· Сначала наблюдается морула крупных клеток, но по мере того, как возрастает число бластомеров, размеры их уменьшаются. Примерно через 5 ч после оплодотворения наблюдается морула мелких клеток.

· Бластула (3-й этап). Бластомеры уплотняются и отодвигаются к периферии. Образуется бластула, внутри которой имеется полость - бластоцель; желток образует впячивание навстречу накрывающей его бластодерме.

· Гаструла (4-й этап). При дальнейшем размножении клеток анимального полюса происходит обрастание желтка: бластомеры как бы сползают в сторону вегетативного полюса, постепенно накрывая его; образуется зародышевый узелок; формируются зародышевые пласты, а из них зачатки органов.

· К концу первого дня после оплодотворения в икринке имеется зародыш в виде прозрачной зародышевой полоски, лежащей на желтке. Произошла закладка головного и туловищного зачатков, причём головной конец заметен резче, хвостовой конец утончается постепенно, ограничиваясь едва заметно; выявляются участки эмбрионального материала, которые дадут начало хорде, миотомам, кишечной энтодерме, нервной и другим системам.

· В течение вторых суток проходят следующие три этапа.

· Органогенез (5-й этап). Зародыш увеличивается в размерах: тело утолщается, хвостовой отдел оканчивается перед головным, немного не доходя до него. Формируются головной, туловищный, хвостовой отделы тела и основные органы и системы органов: нервная, мышечная, кишечник и т. д. Примерно через 28 ч после оплодотворения в головном отделе хорошо виден мозг, причем заметно разделение его на передний и задний отделы, четко различимы слуховые пузырьки, глаза продолговатой формы, ещё не имеющие пигмента. В туловищном отделе происходит сегментация хорды. Примерно через 32 ч. после оплодотворения хорошо заметна плавниковая кайма, начинающаяся на спинной стороне тела в задней его трети. Кайма огибает хвостовой отдел и подходит к желтку. Видны также плавниковые складочки на желтке.

· Появляется нервно-мышечная моторика (6-й этап). Зародыш начинает временами подергиваться, а затем периодически поворачивается в оболочке. Так как зародыш в это время дышит поверхностью тела (специальных органов дыхания нет), то перемешивание перивителлиновой жидкости при таких поворотах способствует улучшению газового обмена.

· Зародыш настолько увеличивается, что хвостовой отдел начинает заворачиваться по поверхности желтка, образуя спираль. В головном отделе просматриваются обонятельные ямки, глазные бокалы, хрусталики, отолиты. В глазах появляется точечный меланин. Сердечная трубка сокращается, но форменных элементов крови ещё нет. Хорошо видна кишечная трубка. Продолжается сегментация тела (в хвостовом отделе). Желточный мешок становится грушевидным.

· Начинает функционировать эмбриональная дыхательная система (7-й этап). Так как дефинитивные органы дыхания ещё не сформированы, то дыхательную функцию выполняет сеть кровеносных сосудов: Кювьеровы протоки (лежащие на передней части желточного мешка), нижняя хвостовая вена (в хвостовом отделе тела), сеть сегментальных сосудов в плавниковой кайме (в анальной ее части). В токе плазмы крови появляются форменные элементы. Заканчивается сегментация тела. Появляются грудные плавнички. Усиливается пигментация глаз. Примерно через 52 ч после оплодотворения появляются пигментные клетки над кишечной трубкой, вскоре покрывающие головку зародыша, спинной и хвостовой отделы и желточный мешок. Пигментные клетки (меланофоры) крупные, лежат близко друг к другу (группами). На голове видны зачатки жаберных крышек. На голове и желтке появляются железки вылупления.

· К концу вторых - началу третьих суток после оплодотворения начинается последний - 8-й этап развития зародыша в оболочке. Увеличиваются все части тела и просвечивающие сквозь прозрачные покровы органы. Головка зародыша частично обособляется от желтка. В слуховых пузырьках видны полукружные каналы. Отчетливо видна ротовая ямка (рот неподвижный, открытый). Оформляется жаберно-челюстной аппарат. В передней части головы видны клетки, образующие железки приклеивания. Основания грудных плавников расположены наклонно по отношению к оси тела. В плавниковой складке обособляются спинной, хвостовой и анальный участки. Усиливается пигментация тела.

· Примерно через 78 ч после оплодотворения начинается массовый выклев молоди. Выклюнувшиеся зародыши, или предличинки (этап развития А, или последний зародышевый), имеют около 5,0-5,2 мм длины (рис. 39). Обращает на себя внимание большой желточный мешок грушевидной формы и прямая (не изогнутая) хорда. Голова немного пригнута вниз. В передней части ее, ближе к глазам, имеются углубления - обонятельные ямки. Хорошо видны сегменты (их насчитывается 38), не одинаковые по величине, они постепенно уменьшаются к заднему концу тела. По спине зародыша, начиная с 9-го сегмента, тянется вдоль тела плавниковая кайма, переходящая на хвост, далее на брюшную сторону и оканчивающаяся на желточном мешке. В хвостовой части плавниковая кайма разделяется задним концом хорды на две равные половины. Плавниковая кайма узкая, недифференцированная, без выемок, расширяется только в хвостовой части, прозрачная, чуть-чуть уплотненная с прилегающей к телу стороны; в спинной и анальной частях пронизана кровеносными сосудами. Грудные плавнички подвижны. Глаза сильно пигментированы. По телу разбросаны пигментные клетки; больше всего их на голове и вдоль спинного и брюшного краев тела, лежат они и на желточном мешке. На голове и спине имеется также желтоватый пигмент.

· На переднем краю головы зародыши имеют железу приклеивания, позволяющую им прикрепляться к подводным растениям. Сквозь прозрачное тело просвечивают внутренние органы: сердце в околосердечной сумке, кишка, прямая, ещё без просвета, не вполне сформированный жаберный аппарат - только начальные жаберные дужки прикрыты намечающейся жаберной крышкой, два отолита в слуховой капсуле. Рот открыт, имеет форму ямки.

· В течение 1-х суток жизни после выклева зародыши движутся периодически; время от времени, приклеившись к растениям, они висят неподвижно, покойно; затем, оторвавшись от субстрата, проделывают несколько червеобразных движений, после чего опять приклеиваются. Таким образом чередуются состояния движения и покоя.

· При указанных температурах преобразования зародышей протекают быстро. Уже к концу первого дня их жизни (длина 6 мм) желточный мешок оказывается сильно втянутым. На 2-е сутки жизни (длина 5,9-6,7 мм) зародыши имеют сравнительно небольшой желточный мешок. Уменьшение желточного мешка происходит по всей площади соединения его с зародышем, но быстрее в передней расширенной части. В плавниковой кайме, особенно в нижней части хвостового отдела, уплотнённые участки (скопления мезенхимных клеток) становятся более значительными. Зародыши больше не приклеиваются к растениям, они постоянно плавают.

· На 3-й сутки жизни (этап развития В, или первый личиночный) при длине тела 6,2-7,8 мм у молоди остается совсем мало желтка. Хорда по-прежнему оканчивается прямо - она не изогнута. У особей длиной около 7 мм дифференциации плавниковой каймы ещё нет, но в хвостовой части в нижней половине намечаются мезенхимные тяжики. Пигментных клеток становится больше. Жаберная крышка прикрывает не все жаберные дужки. Линия основания грудных плавников становится вертикальной. Кровь начинает окрашиваться, приобретает очень слабый жёлто-розовый оттенок.

· Кишечник представляет собой едва изогнутую трубку, но уже с просветом. Молодь заглатывает воздух, плавательный пузырь (задняя камера) наполняется им и становится хорошо видным. Наполнение плавательного пузыря воздухом облегчает передвижение рыбок. Части ротового аппарата могут двигаться. Рот перемещается на конец рыла.

· Молодь переходит к активному питанию (внешней пищей). Таким образом, в это время у личинок питание смешанное: как внешней пищей, так и за счет не совсем израсходованного желточного мешка. Вследствие прозрачности тела хорошо видно содержимое кишечника.

· На 4-е сутки жизни (этап развития С1; или второй личиночный)длина личинок достигает 5,5-9,0 мм. Самые мелкие из них имеют ещё остатки желтка. Рот приобретает способность закрываться полностью.

· У личинок, достигших длины около 8,3 мм, задний конец хорды - уростиль - начинает загибаться кверху. Зачатки лучей в нижней половине хвостовой части плавниковой каймы увеличиваются. Плавниковая кайма в передней части (на спине) становится более высокой, здесь появляется сгущение мезенхимных клеток. Такое же сгущение мезенхимы наблюдается в анальной части каймы, на месте будущего анального плавника. Перед хвостом плавниковая кайма становится немного уже, тем самым намечаются границы хвоста.

· Пигментных клеток становится очень много, они крупные, разбросаны по всему телу. Особенно крупны они на спинной стороне головы. Жаберные крышки увеличиваются. Личинки уже заглатывают циклопов, босмий и других мелких ветвистоусых и веслоногих рачков.

· На 5-е сутки жизни (этап развития С2, или третий личиночный)при длине 7,0-10,1 мм личинки отличаются от предыдущих в основном тем, что у них сильнее загнут уростиль, хвост стал гетероцеркальным, в плавниковой кайме резче выделяется хвостовой отдел, в котором лучи уже сформировались; в спинном и анальном отделах плавниковой каймы сгущения мезенхимы стали плотнее. На челюстях появляются роговые зубы. В пищевом комке кроме коловраток, ветвистоусых и веслоногих рачков начинают встречаться планктонные личинки хирономид.

· На 6-е сутки жизни (длина 8,2-11,3мм) личинки своим общим видом напоминают уже больше рыбку, чем личинку. Головка из закругленной становится вытянутой. Жаберные крышки закрывают все жаберные дужки. Хвостовой отдел на плавниковой кайме ограничивается четче, мезенхимные сгущения в спинном и анальном участках каймы уплотняются. Тело личинок становится менее прозрачным, сегменты видны плохо, только в задней части.

· На 8-е сутки жизни личинки достигают длины 10-12,8 мм. Меньшие из них прошли этап развития D1, , или четвертый личиночный, у наиболее крупных развитие продвинулось до этапа D2 -пятого личиночного.

· Сегменты в теле видны совсем плохо. Уростиль сильно загибается кверху, образуя почти прямой угол с плавниковыми лучами. В плавательном пузыре обе камеры наполнены воздухом. На месте брюшных плавников появляются кожистые выросты. Плавниковая кайма ясно дифференцирована, спинной отдел ее имеет лучи, в анальном ее отделе также появляются зачатки лучей. Хорошо видны кости черепа. У наиболее крупных рыбок хвостовой отдел представляет собой сформированный хвостовой плавник (гомоцеркальный); появляется хвостовая выемка, раздваивающая плавник на верхнюю и нижнюю лопасти. Спинной плавник также вполне сформирован. Грудные и брюшные плавники ещё не имеют лучей. Все тело очень сильно пигментировано. Рот становится выдвижным. Кишечник слабо изогнут, намечается первая петля.

· На 11-е сутки жизни (длина 11,1 - 16,0 мм) у личинок спинной и анальный участки плавниковой каймы приобретают форму плавников. С хвостовым плавником они соединяются совсем узенькими перетяжками. Лопасти брюшных плавников становятся крупнее, но лучей в них ещё нет. Пигментные клетки очень крупные. В кишечнике образуется первая петля.

· На 13-е сутки жизни (длина 12-13 мм) остатки плавниковой каймы между плавниками становятся еле заметными. Тело почти непрозрачно, лишь слабо просвечивает кишечник.

· На 14-е сутки жизни (этап развития Е, или шестой личиночный)при длине тела 15-20 мм никаких следов плавниковой каймы между плавниками нет. В брюшных и грудных плавниках появились лучи. Тело непрозрачно, его почти сплошь покрывают пигментные клетки. В кишечнике стало две петли. Чешуи ещё нет. Дальнейшее развитие происходит в выростном пруду.

· В течение развития у зародыша чередуются периоды усиленного роста тканей и периоды усиленной дифференцировки их и образования новых зачатков органов. При этом меняется характер обмена веществ, в частности интенсивность водного обмена, интенсивность усвоения биогенных элементов (фосфора, кальция, углерода), аминокислотный состав тела (уменьшается число свободных аминокислот, увеличивается количество связанных), интенсивность потребления кислорода. Наиболее интенсивен обмен во время формирования органов и тканей. Чувствительность зародышей к внешним воздействиям - тряске, колебаниям температуры, содержанию кислорода - на разных стадиях развития различна. Наименее устойчивы зародыши во время усиленного формирования тканей и органов, когда обмен наиболее интенсивен. Это начало дробления, гаструляция, закрытие бластопора, начало формирования зародыша и т. д. Это обстоятельство учитывается при работах с икрой, особенно при ее перевозках.

· Инкубация икры рыб каждого вида проходит при определённых условиях внешней среды (температура, содержание кислорода и углекислоты, рН, освещенность, соленость и т. д. ).

· Исход инкубации определяется также качеством икры. Оно связано с видом рыбы, ее возрастом, условиями содержания и в предыдущий год, и особенно перед нерестом, временем взятия икры от самок, а при искусственном осеменении - с техникой проведения всех операций.

· Длительная задержка икры в полости тела самки вызывает перезревание. Перезревшая икра характеризуется пониженной оплодотворяемостью, повышенным отходом в период инкубации, увеличенным числом уродов и самцов.

· Невыметанные зрелые половые продукты рассасываются. Но это длительный процесс. Поэтому если нерест почему-либо не прошел (например, из-за похолодания), то очередной нерест на следующий год также может не состояться, так как в гонадах не успеют пройти процессы резорбции зрелых невыметанных клеток и образования клеток новых генераций.

· Продолжительность инкубации при прочих равных условиях зависит от температуры: чем она выше, тем развитие происходит быстрее.

· У рыб, выметывающих икру весной и летом, при высоких температурах, развитие длится несколько дней; у рыб с осенне-зимним нерестом - несколько месяцев.

· Успешнее всего инкубация проходит при оптимальной температуре. При повышенной она хотя и заканчивается быстрее, но молодь выклевывается мелкой и недоразвитой, а при понижении температуры зародыши более крупные, но нарушается процесс выклева. При отклонении температуры повышается количество уродов -особей с укороченным туловищем, искривлением позвоночника, водянкой околосердечной и брюшной полости, а также двухголовых экземпляров, срастающихся разными участками туловища, особей с аномалиями челюстного аппарата и т. д.

· Для учета длительности развития существует понятие “градусо-дни”. Это произведение средней температуры инкубации на число дней развития икры. Оно дает общее представление о сумме тепла, необходимого для развития молоди до выклева. Но это не постоянная величина, она имеет разные значения при разных температурах. У карпа развитие длится 54-126 градусо-дней, у радужной форели - 330-400. При неблагоприятных условиях, например при недостатке кислорода, продолжительность развития удлиняется.

Питание и упитанность рыб

· Значение питания в жизнедеятельности организма очень велико. Пища, поступающая в организм, обеспечивает на всех этапах его развития энергетические процессы, связанные с движением, ростом, созреванием, размножением. Так через потребление пищи осуществляется одна из важнейших связей организма с окружающей средой. На протяжении индивидуального развития у рыб имеют место два типа питания - эндогенное (за счет внутренних ресурсов организма) и экзогенное (за счет внешней пищи).

· Большинство рыб большую часть жизни питается экзогенно. Однако у всех рыб питание в начальный период жизни - развитие в икринке и сразу после вылупления эмбриона - происходит за счёт запасов желтка и жира в желточном мешке (эндогенное питание) . У взрослых рыб также бывают периоды эндогенного питания, например у рыб, которые не питаются зимой или живут в пересыхающих водоемах, а также у проходных рыб во время нерестовых миграций. В это время поступление пищи извне прекращается.

· Эндогенное питание поддерживает обмен веществ у рыб во время зимовки, а у мигрирующих - покрывает огромную трату энергии при их длительных передвижениях от мест нагула к местам нереста (осетровые, лососи, некоторые сельди, угри) и созревание в это время половых продуктов, т. е. в организме происходит преобразование накопленных в предыдущий период энергетических ресурсов (в первую очередь жира).

· У дальневосточных лососей и угрей этот процесс является необратимым: организм настолько истощается, что после нереста рыба погибает.

· Соотношение этих двух форм питания у разных видов различно. По разнообразию пищи среди рыб различают монофагов (потребляющих пищу одного вида), стенофагов (набор пищевых объектов невелик) и эврифагов (пища разнокачественна).

· Существует ряд классификаций рыб соответственно их питанию. Прежде всего рыб делят на мирных и хищных.

· Мирные рыбы могут питаться беспозвоночными, растительностью и детритом. Сюда относятся мирные животноядные: планктонофаги, (сельди, некоторые сиги и т. д. ) и бентософаги (лещ, некоторые сиги и др. ); фитофаги (краснопёрка, растительноядные дальневосточные карповые - толстолобик, белый амур, амурский лещ и др. ); детритофаги (закаспийская храмуля и др. )

· Хищники питаются рыбой, а при случае даже другими позвоночными. Однако это деление весьма относительно: многие рыбы всеядны (сазан, карп), иногда бентософаги могут переходить на питание планктоном, а мирные животноядные при отсутствии обычной пищи становятся хищниками.

· Приспособленность разных видов рыб к определённому виду пищи четко проявляется в строении пищеварительного тракта -рот, жаберный аппарат, глотка, кишечник. Смена пищи на протяжении онтогенеза сопровождается морфофизиологическими изменениями.

· Изменение характера питания обусловлено рядом биотических и абиотических факторов: возрастом, полом, степенью зрелости, состоянием здоровья, сезоном года и т. д.

· Возрастные особенности питания рыб. Экзогенное питание рыб начинается не сразу после выхода из икринки, а после некоторого периода желточного питания, но до того, как желток будет полностью израсходован (у карповых, окуневых и других - через несколько дней после выклева, у лососей - через несколько недель). Промежуток времени, когда молодь питается отчасти внешней пищей, а отчасти остатками желтка, называется периодом смешанного питания. Так как молодь в это время ещё очень мала, то ей доступны лишь самые мелкие формы планктона, однако уже через 1-2 дня она может захватывать и крупных его представителей. Таким образом, молодь всех рыб вначале питается зоопланктоном. Затем, по мере роста, пищевые потребности разных видов расходятся. Одни остаются планктоноядными на всю жизнь (верховка, чехонь, многие сиги, в частности пелядь), другие начинают поедать растения (фитопланктон - белый толстолобик, высшие растения - краснопёрка, белый амур и др. ), становятся бентосоядными (сазан, линь, карп и т. д. ) или рыбоядными (щука, окунь, судак и др. ); набор пищевых объектов по мере роста рыб расширяется.

· Например, вобла начинает питаться мелким фито- и зоопланктоном, затем использует зоопланктон более крупный, далее переходит к бентосным организмам - главным образом личинкам хирономид, а став взрослой, питается преимущественно моллюсками. Соответственно возрастные изменения происходят в строении пищеварительного тракта.

· Сезонные особенности питания рыб. Многообразны изменения в питании рыб в течение года. Они связаны прежде всего с температурой воды, сезонными изменениями в составе, численности и доступности пищевых организмов и их приуроченностью к определённому району.

· Например, значительно меняется в течение года роль разных пищевых организмов в питании форели (табл. 7).

Таблица 7 Сезонные изменения в составе пищи форели, % (по Строганову, 1962, с сокращениями) .

Месяцы

I

 II

 III

IV

V

VI

VII

VIII

IX

X

XI

XII

Донные животные, всего

98,5

98,3

97,1

75,8

53,4

59,1

70,5

6,4

26,3

70,3

98,2

100

Из них: гаммарусы лимнеа хирономиды 

70,5 3,9 - 

41,2 23,7 0,4 

12,1 7,7 53,8 

8,1 6,4 2,0 

25,3 1,6 1,6 

4,0 0,9 - 

0,6 1,2 0,3 

- 3,7 0,5 

10,2 3,6 0,2 

19,4 32,7 - 

17,5 3,9 - 

29,4 - - 

Поверхностные животные, всего

-

0,7 

1,7

21,5

52,5

32,2

25,0

93,1

73,4

17

1,5

-

· Особенности питания рыб в зависимости от мест обитания. Фауна пищевых организмов в разных водоемах не идентична, поэтому нередко характер питания одного и того же вида в них не совпадает: например, в пище сига-пыжьяна из реки Печоры преобладают моллюски, из реки Гыды -- ракообразные, из реки Кары -- личинки хирономид. Очень сильно разнится доля планктона, личинок хирономид и детрита в пище серебряного карася из разных водоемов.

· Половые особенности питания рыб. Отмечено различие в наборе пищевых организмов в зависимости от пола рыбы: в Азовском море у самок леща преимущественно встречались Hypaniola, у самцов -- Nereis. Наиболее разительны различия у глубоководных удильщиков: самки хищничают, а паразитирующие на них самцы питаются соками тела самок.

· Величина объектов, служащих пищей рыбам, различна: от микроскопических у планктонофагов до жертвы, превышающей размеры рыбы-хищника.

· Количественные характеристики питания рыб также разнообразны. Обычно масса пищи составляет 2--25% от массы тела рыбы.

· По значению отдельных видов пищи для разных рыб условно выделяют пищу излюбленную (ограниченную 2--6 видами организмов, которые составляют 50--75% пищевого комка), заменяющую, или второстепенную (5--6 видов, образующих 15--30% содержимого пищеварительного тракта), и случайную (много видов пищевых объектов, не превышающих, однако, 4--10% от содержимого пищеварительного тракта). Существуют и другие классификации.

· Количество пищи, потребляемой ежедневно рыбой в течение жизни, неодинаково. Относительно своей массы молодь ест больше, чем взрослые и старые рыбы: у молоди севрюги масса пищи составляла 150% по сравнению с массой тела, а позднее -- только 50%.

· Меняется характер питания рыб (часто очень сильно) при созревании гонад в преднерестовый период, что, видимо, имеет гормональную основу. Многие морские рыбы при приближении нереста питаются мало или совсем не питаются. Особенно резко это выражено у проходных рыб: дальневосточные лососи перестают питаться при переходе из моря в реку за 2--3 мес., а иногда за 1 год до нереста.

· Сильно ослабляется питание при заболеваниях рыб. Рыбы, зараженные паразитами, даже в начальных стадиях инвазии питаются более мелкими объектами и менее интенсивно.

· Интенсивность питания. Для каждого вида рыб характерны свои температурные границы, в которых питание происходит наиболее интенсивно, ослабевает или прекращается. Очень сильно влияет на интенсивность питания состояние рыбы -- упитанная рыба питается менее интенсивно, чем истощенная: годовики карпа после зимнего голодания питаются гораздо активнее, чем сеголетки в конце лета. При определении интенсивности питания учитывают количество пищи, которое находится в пищеварительном тракте в данный момент, суточную ритмику питания и скорость продвижения пищи по тракту. Общее предварительное представление об интенсивности питания дает индекс наполнения пищеварительного тракта -- отношение массы пищи, находящейся в пищеварительном тракте, к массе тела, выраженное или в процентах, или в продецимилле (отношение массы пищи к массе тела, выраженное в десятитысячных долях и обозначаемое 0 /000 ). Этот индекс характеризует накормленность рыбы в данный момент.

· Индекс наполнения может быть общим, если учитывается масса всего пищевого комка, или частным, если определяют долю какого-то компонента. Индексы потребления пищи, например, у личинок плотвы колеблются от 0 до 142%; на более поздних этапах максимальные индексы превышают минимальные в 3--10 раз.

· В течение суток рыбы питаются неравномерно. Промежутки активного питания чередуются с периодами ослабления или даже прекращения потребления пищи. Определенные суточные ритмы обнаруживаются уже на самых ранних этапах развития. На этапе смешанного питания периоды интенсивного поглощения пищи чередуются с периодами полного прекращения питания (ночью). В дальнейшем полного опорожнения кишечного тракта ночью не наблюдается, но интенсивность питания снижается.

· Суточная ритмика питания определяется биологическими особенностями самой рыбы и качеством и поведением пищевых объектов. У мирных рыб, особенно планктоноядных, перерывы в питании невелики, у хищных они могут длиться больше суток. Суточные ритмы питания многих карповых рыб имеют в большинстве случаев два максимума -- утром и вечером. В неблагоприятных условиях, при резких сдвигах температуры, отсутствии пищи -- суточные ритмы могут нарушаться. На интенсивности питания рыб отражаются также суточные миграции основных объектов питания -- планктонных организмов, личинок хирономид, бокоплавов и т. д.

· Пищевой рацион. При изучении питания обычно пытаются установить пищевой рацион рыбы, т. е. количество пищи, съедаемой ею за какой-то период, выраженное в процентах от массы тела.

· Чаще всего определяют суточный рацион, но можно подсчитать и годовой. Существует прямой способ вычисления -- определение количества съеденной пищи, но обычно пользуются косвенными способами, основанными на результатах азотистого баланса, потребления кислорода, учета индексов наполнения кишечника, скорости переваривания пищи и т.д. Например, суточный рацион можно определить по формуле D) = A(24/n), где D -- суточный рацион, %; А -- средний индекс наполнения кишечника, %; п -- скорость переваривания пищи, ч.

· Пищевой рацион рыбы зависит от ряда биотических и абиотических факторов: ее физиологического состояния, интенсивности обмена, качества пищи, а также температуры, содержания кислорода.

· В частности, большое значение имеет качество корма. Сеголетки щуки в день съедают циклопов 160--175% массы тела, олигохет 150--330, личинок хирономид 150--250, рыбы -- 30--50%Вобла съедает в сутки мизид 17% массы тела, а моллюсков--28%. Суточный рацион прудовых рыб составляет 1,5--8% массы тела. Значительное влияние на величину суточного рациона оказывает возраст рыбы: у молоди он выше, у взрослых -- ниже (у личинок карпа в нерестовых прудах он составляет 20--60%, карпа-годовика -- 6--8, у двухлетка -- 2%).

· Физиологическое состояние рыбы отражается на интенсивности питания очень сильно. Истощенная рыба питается более активно, чем упитанная. У леща осенью при коэффициенте упитанности Кy = 2,3 индекс наполнения кишечника составлял 197 0/000, тогда как при Кy =2,5 он был вдвое меньше и не превышал 86 0/000 . Многие рыбы перестают питаться перед нерестом. Ослабляется питание во время заболевания и т.д.

Страницы: 1, 2, 3, 4, 5, 6


© 2008
Полное или частичном использовании материалов
запрещено.