РУБРИКИ

Основы БЖД

 РЕКОМЕНДУЕМ

Главная

Валютные отношения

Ветеринария

Военная кафедра

География

Геодезия

Геология

Астрономия и космонавтика

Банковское биржевое дело

Безопасность жизнедеятельности

Биология и естествознание

Бухгалтерский учет и аудит

Военное дело и гражд. оборона

Кибернетика

Коммуникации и связь

Косметология

Криминалистика

Макроэкономика экономическая

Маркетинг

Международные экономические и

Менеджмент

Микроэкономика экономика

ПОДПИСАТЬСЯ

Рассылка

ПОИСК

Основы БЖД

p align="left">Различают 4 уровня комфортности производственной среды для работаю-щего человека:

комфортный, при котором обеспечивается оптимальная работоспо-собность, хорошее самочувствие и сохранение здоровья;

относительно дискомфортный, при котором обеспечивается задан-ная работоспособность и сохраняется здоровье, но возникают функциональные изменения не выходящие за пределы нормы;

экстремальный, когда снижается работоспособность и возникают функциональные изменения, но без патологии;

сверхэкстремальный, приводящий к возникновению в организме человека патологических и соматических изменений.

3. Влияние физических параметров воздуха на микроклимат.

Основное влияние на комфортность микроклимата оказывают физические параметры воздуха. Температура воздуха определяет тепловой комфорт. В ус-ловиях теплового комфорта у человека не возникает беспокоящих его тепло-вых ощущений. Избыточная теплота отрицательно влияет на сердечно-сосуди-стую систему, дыхание, водный и солевой баланс. При понижении температуры (до - 15 °С) организм может быстро переохладиться, возможны обморожения. Система терморегуляции человека обеспечивает поддержание температуры те-ла в ограниченном диапазоне изменения наружной температуры, за пределами которых необходимо проведение искусственных мероприятий, обеспечиваю-щих нормальное функционирование организма.

Большое гигиеническое значение имеет влажность воздуха, оцениваемая разными гигрометрическими показателями.

Абсолютная влажность - масса водяного пара в 1 м3 воздуха (г/м3), она не дает представления о степени насыщения.

Относительная влажность - отношение абсолютной влажности к макси-мальной в том же объеме и при той же температуре, выраженное в %.

Дефицит насыщения - разность между максимальной и абсолютной влаж-ностью.

Точка росы - температура, при которой отмечается насыщение воздуха во-дяным паром.

Для определения относительной влажности воздуха используют психро-метры и волосяные гигрометры и гигрографы.

Оптимальной для работающих является влажность воздуха в пределах 40 -70 %. При повышенной влажности увеличивается теплопроводность воздуха, это усиливает теплопотери при низкой температуре и затрудняет кожное дыха-ние и теплоотдачу при повышенных температурах. Низкая влажность также неблагоприятна, особенно при повышенных температурах вследствие усиленного испарения влаги с кожных покровов, появлению сухости слизистых обо-лочек и снижению иммунитета организма.

Движение воздуха также оказывает влияние на самочувствие человека. В жарком помещении движение воздуха способствует увеличению теплоотдачи и улучшает состояние организма, при низкой температуре это может усиливать охлаждение организма работающих. Скорость движения воздуха в производст-венных помещениях в летнее время не должна превышать 0,3 м/с, в холодное время года - 0,1 м/с.

Изменения атмосферного давления могут вызывать болезненные реакции в организме работающих, особенно опасными могут быть значительные перепа-ды атмосферного давления в течение короткого времени.

Тема 6. Вентиляция и отопление помещений

Назначение и виды вентиляции.

Требования к вентиляции.

Понятие и расчет воздухообмена.

Отопительные системы.

Аэрация, ионизация и кондиционирование воздуха.

1. Назначение и виды вентиляции

Вентиляция-это система технических средств, обеспечивающих замену загрязненного воздуха внутри помещения на свежий наружный. Назначение вентиляции:

Поддержание оптимального температурно-влажностного режима и химического состава воздуха в соответствии с установленными нормами.

Обеспечение необходимого воздухообмена в различные периоды года.

Предупреждение конденсации паров на внутренних поверхностях.

Равномерное распределение и циркуляция воздуха внутри помеще-ний.

По принципу действия и конструктивным особенностям вентиляпдонные системы подразделяются на:

Вентиляцию с естественным побуждением движения воздуха. Она может бьггь беструбной (оконной) и трубной - имеющей систему каналов (труб) для удаления и притока воздуха. Такая вентиляция не может обеспечить необходимый воздухообмен в различные периоды года

Вентиляцию с механическим побуждением движения воздуха. Она предусматривает использование механических устройств - вентиляторов, под-разделяется на приточную, вытяжную и приточно-вытяжную.

Для устранения проникновения наружного воздуха в холодное время года через открываемые проемы, устраивают воздушные завесы. Для этого подогре-тый воздух подается в виде плоской струи с одной или двух сторон проема.

2. Требования к вентиляции

Нормальная работа вентиляционной системы возможна при выполнении следующих требований:

1. Объем приточного воздуха Ьпр должен соотноситься с объемом удаляемого Ьуд

Ьпр = (1,0-1,1)Ьуд

Приточная и вытяжная системы должны располагаться так, чтобы све-жий воздух подавался на участок, с наименьшим выделением вредности, а уда-лялся там, где это выделение наибольшее.

Работа вентиляции не должна вызывать переохлаждение или перегрев работаю щих.

Шум и вибрация от работающих агрегатов не должна превышать до-пустимого уровня.

Система вентиляции должна быть пожаро- и взрывобезопасна.

3. Понятие и расчет воздухообмена

Воздухообмен - это замена загрязненного воздуха в помещениях свежим наружным воздухом. Воздухообмен является исходной величиной для подбора вентиляционного оборудования и расчета сечения воздуховодов. При опреде-лении воздухообмена должны учитываться физические параметры и химиче-ский состав воздуха внутри помещений и наружного воздуха, а также то, что в помещениях находится работающий персонал, и могут содержаться животные различных категорий.

Необходимый воздухообмен определяют по удаляемой избыточной влаге, избыточной теплоте и избытку вредных веществ (С02, аммиак, пыль и другие загрязнители).

Воздухообмен по избытку влаги рассчитывается по формуле.

, _^. + ^м

ч.+ч.

где: \Уж - количество влаги, выделяемое всеми животными, кг/ч;

\\^исп - количество влаги, испаряемой с пола, поилок, кормушек, кг/ч;

- содержание водяного пара в воздухе помещения при данной темпе-ратуре, кг/м ;

цн - содержание водяного пара в наружном воздухе при данной темпера-туре, кг/м :

Количество влаги, выделяемой животными, в зависимости от видового и количественного состава определяется по формуле:

\Уж = X *\У, ¦ т,

где: У^ - норма выделения влаги в виде пара одним животным данной категории, кг/ч;

т, - количество животных данной категории.

Воздухообмен по избытку теплоты определяется по формуле:

Ь = О»

0,24 рщ (1^-1^)

где: 0,24 кДж/кг - теплоемкость сухого воздуха 1*ыт- температура удаляемого его воздуха, "С 1пр ~ температура приточного воздуха, "С рпр - плотность приточного воздуха, кг/м3

С*и - величина избыточного тепловыделения, кДж/ч, определяется по фор-муле:

Ои ~ 2* Мпост - 2^ *<ух

где ^СЛюст - суммарное количество теплоты, поступающей в помеще-ние, кДж/ч

ХО_ух - суммарное количество теплоты, уходящей из помещения кДж/ч

Воздухообмен по избытку вредных веществ определяется по формуле:

ир= е

Чпдк " Чпр

где О - количество выделяемого в помещение вредного вещества, мг/ч;

чшш - ПДК этого вещества, мг/м3,

Япр - концентрация вредного вещества в приточном воздухе, мг/м

4. Отопительные системы

Отопительные системы - это инженерные сооружения, предназначенные для поддержания в холодное время года температуры на уровне, предусмот-ренном санитарными нормами.

В производственных помещениях используются следующие виды ото-пления: печное и электрическое (местное), паровое, водяное и воздушное (цен-тральное).

Система отопление включает следующие компоненты:

Генератор тепловой энергии

Нагревательные приборы

Трубопроводы, заполненные теплоносителем (пар, вода, воздух).

Печным отоплением оборудуют помещения площадью до 500 \ь, В здани-ях, относящихся к категориям пожарной опасности А, Б л В, и превышающими по высоте более 3 этажей, печное отопление не допускается. Генератором теп-лоты в нем является топка, теплопроводами - дымоходы, нагревательным при-бором - стенки печи. Положительными показателями печного отопления явля-ется невысокая стоимость и одновременное протекание процессов отопления и воздухообмена. Недостатки - доставка и обработка топлива в помещениях, по-требность в значительных площадях для складирования топлива и повышенная пожароопасное! ь.

Паровое и водяное отопление значительно более безопасны в пожарном отношении. Максимальная температура теплоносителя в нагревательных при-борах в соответствии с санитарными нормами не должна превышать 95 "С для водяного и 1)0 аС для парового отопления. При использовании них систем возможно централизованное регулирование температуры и влажности воздуха.

Воздушное отопление осуществляется путем нагрева воздуха и подачи его в помещения по системе специальных каналов или приточной реятиляции. Холодный воздух из помещений удаляется при этом вытяжной вентиляцией. Тепловым генератором здесь является газовый или электрический калорифер. Основным преимуществом воздушного отопления является мала'.; материало-емкость, отсутствие нагревательных приборов, возможность быстро* с повыше-ния температуры в отапливаемых помещениях.

5 Аэрация, ионизация и кондиционирование воздуха.

Аэрация - организованный естественный воздухообмен, который осуще-ствляется за счет ветрового давления, а в горячих цехах за счет дополнительно-го теплового напора. Под действием этих двух факторов воздух поступает в помещение через нижние отверстия с наветренной стороны, а выходит через верхние с подветренной стороны здания.

Ионизация воздуха - образование заряженных ионов под воздействием высокоэнергетических излучений. Атомы, утратившие электроны, превраща-ются в положительно заряженные ионы, присоединившие электроны - в отри-цательно заряженные ионы. Ионы, существующие самостоятельно, называются легкими, а ионы, присоединившие частицы пыли или влаги, называются тяже-лыми. Легкие ионы оказывают на организм благотворное влияние, повышают физическую и умственную работоспособность, снижают артериальное давление и улучшают самочувствие. При этом положительные ионы оказывают менее выраженное действие, чем отрицательные. Для искусственной ионизации воз-духа применяются различные виды ионизаторов.

Кондиционирование воздуха - это комплекс мероприятий по обработке воздуха с целью поддержания заданных физических параметров (температура, влажность, объем воздуха). Кондиционирующая установка состоит из 3-х ка-мер.

1 Рециркуляционной. В ней воздух из помещения смешивается с на-

ружным.

Промывной камеры. В ней воздух очищается, увлажняется и охла-ждается (в летнее время года) водой, распыляемой форсунками.

Камеры подогрева. В ней воздух подогревается калорифером, его влажность снижается до заданной, после чего поступает в помещение.

Тема 7. Производственный шум и вибрация

Определение шума и его физиологическое действие.

Физические характеристики шума.

Вибрация.

Санитарно-гигиеническое нормирование уровня шума и вибрации.

Приборы и методы измерения уровня шума и вибрации.

Способы и средства защиты от вредных воздействий производст-венного шума и вибрации.

1. Определение шума и его физиологическое действие

Шум - это бессистемное сочетание звуков различной частоты и интенсив-ности. Звук - это упругие колебания среды, воспринимаемые человеком. Эти колебания создают в акустической среде зоны уплотнения и разряжения. Ско-рость распространения звука зависит от упругих свойств среды (в воздухе 344 м/с, в воде 1500 м/с, в стали 5000 м/с).

Звук, достигая барабанной перепонки, вызывает ее колебания, которые че-рез слуховой нерв передаются в слуховой центр мозга и создают ощущение звука. Длительное воздействие шума оказывает неблагоприятное воздействие на работоспособность и самочувствие человека. При этом отмечается снижение внимания и ухудшение реакций человека. Резкие и интенсивные звуки прово-цируют скачки артериального давления.

Многолетнее воздействие производственных шумов ведут к развитию ту-гоухости (глухоты), артериальной гипертонии, заболеваний желудочно-кишеч-ного тракта, а также нервных заболеваний. Функционально шум вызывает го-ловную боль, головокружение, ведет к появлению нервных и сердечно-сосудис-тых реакций, нарушение функций ЖКТ и обменных процессов в организме. V работающих отмечается снижение памяти, повышение утомляемости, замедле-ние психических реакций. Шум также нарушает точность и координацию дви-жений, концентрацию памяти, ухудшает восприимчивость звуковых и световых сигналов, способствует росту травматизма. Наиболее негативно воздействие высокочастотного шума.

2. Физические характеристики шума

Основными физическими характеристиками шума является частота (/, Гц) и интенсивность звука (I)

Частота звука, вызывающая слуховые ощущения, равна 20 Гц - 20 кГц. Ухо человека наиболее чувствительно к звукам с частотой 1000 - 3000 Гц.

Неслышимые звуки < 20 Гц - инфразвуки, > 20кГц - ультразвуки.

Звуки слышимого диапазона делятся на:

- низкочастотные - < 350 Гц

- среднечастотные 350 - 800 Гц

- высокочастотные - > 800 Гц.

Область слышимости ограничена не только частотой, но и звуковым дав-лением (Па). Интенсивность звука определяется по формуле:

1 = Р V [Вт/м2],

где: Р - давление звука, Па;

V - скорость звука, м/с

Уровень звукового давления и интенсивности звука могут изменяться в широких пределах - по давлению до 10 раз, по интенсивности - до 1016 раз.

Учитывая нелинейный характер чувствительности слуховых ощущений у человека, была введена логарифмическая величина уровня звука,

Г= \% ^-- (Бел)

где 1о - интенсивность звука, соответствующая порогу слышимости По = 10'12 Вт/ м2 на / = 1000 Гц). На практике используют производную единицу - ОД Б - 1децибел (дБ).

Диапазон интенсивности звуков, воспринимаемых человеческим ухом, со-ставляет 130 дБ, при > 130 дБ - возникают болевые ощущения.

Важной характеристикой шума является его спектр - зависимость уровня звука (дБ) от частоты (Гц). Он может быть линейным, сплошным и смешанным. В сельскохозяйственном производстве преобладающим для шума является сме-шанный спектр.

3. Вибрация.

Вибрация - это низкочастотные колебания мебханизмов и машин, переда-ваемые телу человека через кожный покров, костную и мышечную ткань. Виб-рация оказьюает резко выраженное неблагоприятное воздействие на работоспо-собность и физиологические функции организма, которое связано с явлением резонанса Наиболее вредное действие на организм оказывает вибрация, часто та которой совпадает с частотой резонанеов тела и органов человека (для всего тела /р = 6 ГЦ, сердца - 4 Гц, голова - 25 Гц, ЦНС - 250 Гц, другие органы - 3-8 Гц).Даже кратковременное воздействие вибрации такой частоты вызывает расстройства основных физиологических функций. Длительное воздействие вибрации вызывает физиологические изменения сосудов и вестибулярного ап-парата, является причиной вибрационной болезни, ведущей к инвалидности.

Основными физическими характеристиками вибрации, наряду с частотой колебаний (Гц) /, является амплитуда (А) - величина отклонения от положения равновесия (мм), скорость вибрации (м/с) - V.

У = 2п/ А- 10 а также ускорение вибрации:

а = (2тг/)2- А- 10

Так же как и шум, вибрация имеет свой спектр, который может быть ли-нейным (дискретным), сплошным и смешанным.

Так как диапазон изменения параметров вибрации от пороговых (безопас-ных) значений до действительных велик, для измерения уровня используют ло-гарифм отношения действительных значений к пороговым, а за единицу изме-рения принимают дБ.

4. Санитарно-гигиеническое нормирование уровня шума и вибрации.

Цель санитарно - гигиенического нормирования уровня шума и вибрации - предотвращение функциональных расстройств и заболеваний. В основе нор-мирования лежат медицинские показания. Нормативы устанавливают предель-но допустимую суточную и недельную норму воздействий шума и вибрации.

Для гигиенической оценки постоянного шума служит уровень звукового давления в спектре шума. Для оценки акустической обстановки, связанной с непостоянным шумом используется логарифмическая интенсивность звука, которая измеряется по стандартной шкале А шумомера. Эта шкала имитирует частотную чувствительность человеческого уха, а интенсивность при этом обо-значается в дБА. Для оценки воздействия непостоянного шума используют также его эквивалентный но энергии уровень, который оказывает такое же дей-ствие, как и постоянный шум. Для оценки суточной шумовой дозы определяют энергию шума, накопленную за это время действия.

Предельно допустимый уровень шума для рабочих мест составляет 80 дБА. Недопустимо даже кратковременное пребывание в зоне с уровнем шума > 115 дБА без средств индивидуальной защиты. Запрещается нахождение лю-дей в зоне с уровнем шума более 130 дБ А.

При вибрации колебательная энергия, поглощенная телом человека, про-порциональна площади контакта, времени воздействия и интенсивности коле-баний. Для нормирования воздействия вибрации установлены гигиенические нормативы, определяющие предельные величины виброскорости и виброускорения как в линейных единицах, так и в логарифмических (дБ) в зависимости от частоты вибрации.

5. Приборы и методы измерения уровня шума и вибрации

Для измерения уровня и анализа спектра шума служат шумомеры. В шу-момерах используют конденсаторные или пьезоэлектрические микрофоны, преобразующие звуковые колебания в электрический сигнал, который затем усиливается, проходит через корректирующие фильтры и поступает на прибор-регистратор. Среди отечественных шумомеров можно указать прибор ВШВ-003, позволяющий проводить измерения в частотном диапазоне 10-20 000 Гц (уровень измеряемого звука 25-140 дБ), и прибор ШКВ-! с фильтрами ФЭ-2 (уровень измеряемого звука 30-140 дБ в частотном диапазоне 2-40 000 Гц). Вибрацию измеряют вибромирами типа НВА-1 и ШИВ-Г С помощью вибро-метра НВА-1 в комплексе с датчиками можно определять низкочастотную виб-роскорость и ускорение.

6. Способы и средства защиты от вредных воздействий производст-венного шума и вибрации.

Основные способы защиты от вредного воздействия шума и вибрации включают следующие возможности:

Устранение или уменьшение шума в источнике образования.

Снижение шума при его распространении

Применение индивидуальной защиты.

Устранение или уменьшение шума и вибрации в источнике возникновения достигают изменением технологического процесса, заменой шумного оборудо-вания на малошумное, применением деталей из пластика, центрированием и балансировкой деталей, проведением профилактических и смазочш-.ге работ.

Снижение шума и вибрации при их распространении достигается приме-нением звуко- и виброизоляции. Звукоизоляция представляет собой ограж-дающие конструкции, выполненные из звукопоглощающих материалов (аку-стические плиты из специальных материалов - пенопласта, поролона, губчатой резины, войлока). Эффективным способом звукоизоляции является экраниро-вание источника шума. Акустические экраны, устанавливаемые на пути рас-пространения звука, образуют зону акустической тени. Защита от вибрации ос-нована на превращении энергии механических колебаний в тепловую. Это дос-тигается использованием в конструкциях вибрирующих агрегатов демпфирую-щих материалов- резины, пластиков и различных мастик на основе эпоксидных смол.

Методы коллективной защиты от шума не всегда дают необходимый эф-фект, в этих случаях используют СИЗ - наружные и внутренние противошумы.

Наружные противошумы - это наушники или шлемы, выполненные из губчатой резины или войлока.

Внутренние противошумы - это вкладыши, вставляемые в слуховой канал - беруши (мягкие тампоны из ультратонкого волокна) и заглушки, изготовлен-ные из эластичных полимеров и резины.

К средствам индивидуальной защиты от вибрации относятся специальные рукавицы, перчатки, виброзащитная обувь с прокладками из демпфирующих материалов. Организационные меры по предупреждению вибрационной болез-ни состоят в разработке и внедрении физиологически обоснованных режимов труда (отдых на 7-10 мин через 1 час работы), проведение физиотерапевтиче-ских мероприятий.

Санитарные мероприятия по борьбе с шумами включают устройство за-щитных противошумных зон (деревья, кустарники) между цехами, размещение шумных цехов с наветренной стороны, рациональное расположение шумных участков внутри цеха, их звукоизоляцию.

Тема 8. Вредные излучения и защита от них на производстве

Виды излучений, применяемые в сельскохозяйственном

производ-стве.

Ионизирующие излучения.

3 Электромагнитное радиоизлучение.

Инфракрасное излучение.

Световое излучение.

Ультрафиолетовое излучение.

Лазерное излучение.

1. Виды излучений, применяемые в сельскохозяйственном производ-стве.

Переход сельскохозяйственного производства на промышленную основу связан с широким применением в технологических процессах различных видов излучений и электромагнитных полей высокой и сверхвысокой частоты.

Инфракрасное излучение используется для обогрева, ультрафиолетовое излучение -- для облучения животных и бактерицидной обработки помещений Электромагнитные поля возникают при использовании электротермических ус-тановок индукционного и диэлектрического нагрева, лазерное излучение -при работе оптических квантовых генераторов (лазеров). Ионизирующие излучения используются в сельском хозяйстве для борьбы с насекомыми, стерилизации пищевых продуктов, в диагностических и исследовательских целях.

Все эти излучения могут оказывать вредное воздействие на здоровье че-ловека, поэтому необходимо нормирование и защита от их воздействия на жиз-ненно важные органы и системы человека.

К ионизирующим излучениям относятся корпускулярные (альфа, бета -нейтроны) и коротковолновые электромагнитные излучения (гамма- и рентге-новское), способные при взаимодействии с веществом вызывать ионизацию атомов.

Все ионизирующие излучения характеризуются проникающей и ионизи-рующей способностью:

а - имеют наибольшую ионизирующую и наименьшую проникающую способность.

(} - имеют меньшую ионизирующую, но более высокую проникающую способность.

у - имеют наименьшую ионизирующую, но наибольшую проникающую способность.

Рентгеновское (Х-) излучение имеет ту же природу, что и у - излучение, но отличается большей длиной волны и, соответственно, меньшей ионизирующей способностью.

Воздействие ионизирующих излучений на биологические ткани ведет к разрушению межмолекулярных связей, изменению их структуры и гибели ор-ганизмов. У человека наиболее уязвимыми являются органы кроветворения и железы внутренней секреции.

Для оценки радиации используется понятие активности, а также экспози-ционной, поглощенной, эквивалентной и эффективной дозы.

1. Активность радиации - число распадов атомных ядер в единицу вре-мени. Единица активности - Беккерель (Бк).

1 Беккерель (Бк) = 1 распад/с Внесистемной единицей является Кюри(Ки):

1 Ки = 3,7 ¦ 10ю Бк (в 1с 3,7 * 1010 распадов).

2. Экспозиционная доза характеризует ионизирующую способность излучения в воздухе, т.е. радиационный фон.

Единицей экспозиционной дозы является кулон/кг (Кл/кг), внесистемная единица - рентген (Р). Используются производные единицы- мР и мкР. Под уровнем радиации понимается экспозиционная доза, отнесенная ко времени (Р/ч). На земной поверхности уровень радиации, образованный природным фо-ном находится в пределах 3-25 мкР/ч.

3. Поглощенная доза - энергия излучения, поглощенная 1 кг массы облучаемого объекта. Единица поглощенной дозы- Грей.

Бтк = Е/т = Дж/кг = 1 Грей (система СИ). В практических измерениях используется также внесистемная единица -радиан (рад).

1Гр=100рад

В связи с тем, что одинаковая поглощенная доза различных видов излу-чений оказывает разное биологическое действие, введено понятие эквивалент-ной дозы.

4. Эквивалентная доза используется для оценки радиационной опасности хронического облучения. Единица эквивалентной дозы - Зиверт. Используется также внесистемная единица - БЭР (биологический эквивалент рада).

1 Зв = 100БЭР

Эквивалентная доза определяется умножением поглощенной дозы Отк на коэффициент тяжести ^ц данного вида излучения.

НТк = Отк " ^к (Дж/кг - Зиверт) ^к колеблется от 20 (для а - излучения, потоков тяжелых ядер и осколков деления) до 10 (быстрые нейтроны и протоны) и 1 (фотоны, (3-, и рентгеновское излучения).

Облучение может быть внешним - когда источник излучения находится снаружи и внутренним - при попадании радионуклидов внутрь организма через легкие, ЖКТ и кожу.

5. Эффективная доза - полученная за определенное время поступления радионуклидов в организм. Она позволяет оценить риск отдаленных последствий облучения отдельных органов и тканей с учетом их различной радиочувствительности.

Е = I ^т * Нтт где: взвешивающий коэффициент для ткани Т,

Нтт - эквивалентная доза для ткани Т за время т Единица измерения эквивалентной дозы также Зиверт. Значения ^т ко-леблются от 0,2 (костный мозг) до 0,12 (легкие, желудок) и 0,05 (печень, под-желудочная железа).

Получение дозы 0,2-0,3 Зв вызывает появление в организме обратимых изменений (в частности, в формуле крови), 0,8-1,2 Зв - начальные признаки лу-чевой болезни (тошнота, рвота, головокружение, тахикардия), 2,7-3,0 Зв - раз-вивается острая лучевая болезнь, 7,0 Зв и более даже при однократном облуче-нии приводит к летальному исходу.

При работе с радиоактивными материалами следует учитывать, что био-логическое действие излучения сопровождается эффектом кумуляции (накоп-ления). Радиоактивное облучение способно вызывать в отдаленных последст-виях лейкозы, злокачественные новообразования и раннее старение.

Гигиеническая регламентация ионизирующего излучения проводится в соответствии с нормами радиационной безопасности НРБ-99 (СП-2.6.1.758-99 -санитарные правила). Для персонала радиационно-опасных объектов годовая эквивалентная доза не должна превышать 20 мЗв, для населения - 1 мЗв

Основными средствами защиты от ионизирующих излучений являются стационарные и передвижные защитные экраны, контейнеры и защитные сейфы, предназначенные для хранения и транспортировки радиоактивных источ-ников II ОТХОДОВ.

3. Электромагнитное радиоизлучение

Спектр электромагнитных колебаний по частоте достигает 1021 Гц. В зави-симости от энергии фотонов (квантов) его подразделяют на область ионизи-рующих и неионизирующих излучений. Характер и степень воздействия на ор-ганизм человека электромагнитных излучений зависят от интенсивности, вре-мени воздействия и длины волны. Биологическая активность электромагнитно-го излучения (ЭМИ) возрастает с уменьшением длины волны.

Радиоволны НЧ - диапазон - км

ВЧ - десятки, сотни м

УВЧ-м

СВЧ - дм, см, мм

Неионизирующие ЭМИ ИК - 0,7 - 1000 мкм

Свет - 0,4 - 0,7 мкм

УФ-0,1-0,4 мкм ~

Ионизирующие ЭМИ X - 0,001 - 0,01 мкм

у - менее 0,001 мкм (менее 1_нм)

ЭМИ радиочастотного диапазона большой интенсивности вызывает тепло-вой эффект. Облучение глаз может привести к помутнению хрусталика (ката-ракта) - особенно при воздействии волн в диапазоне 300 МГц - 300 ГТц

При длительном воздействии ЭМИ с другими значениями длин волн воз-никают различные функциональные расстройства, связанные со сдвигами эн-докринно-обменных процессов и состава крови. В связи с этим могут появлять-ся головные боли, повышенное или пониженное артериальное давление, уре-жение пульса, изменение проводимости в сердечной мышце, нервно - психиче-ские расстройства, быстрая утомляемость, возможны также трофические нару-шения: выпадение волос, ломкость ногтей. На ранней стадии изменения носит обратимый характер, но при продолжающемся воздействии ЭМИ приобретают стойкий характер. В пределах радиоволнового диапазона наибольшую биоло-гическую активность имеет СВЧ - излучение.

В основе гигиенического нормирования ЭМИ положен принцип дейст-вующей дозы, учитывающей энергетическую нагрузку на человека.

При гигиеническом нормировании воздействия ЭМИ у источников разли-чают 2 зоны воздействия:

ближнюю (зону индукции), которая реализуется на расстоянии г < Х./6, в которой ЭМ поле еще не сформировалось.

дальнюю г > 6% (ЭМ поле сформировалось)

В ближней зоне обе составляющие ЭМ поля - электрическая и магнитная в диапазоне 300 МГц - 300 ГГЦ - оцениваются поверхностной плотностью потока энергии (11ПЭ - Вт/.м2). В этой зоне должны находится рабочие места но об-служиванию источников СВЧ - излучений.

В дальней зоне предельно допустимую плотность потока энергии в диапа-зоне часто! 300 МГц - 300 ГГЦ на рабочих местах устанавливают исходя из допустимого значения нагрузки на организм человека и времени его пребыва-ния в зоне облучения. Она не должна превышать !0 Вт/м". Предельную плот-ность потока энергии определяют по формуле:

ППЭ = \\УТ

где. \Ук: - нормированное значение допустимой энергетической нагрузки на человека, Вт * ч/м'; 2 - 20 Вт * ч/м2)

'Г - время пребывания в зоне облучения, ч

Основные способы защиты от ЭМИ:

1. Защита временем - ограничение времени пребывания персонала в
зоне облучения.

Т = \УЫ/ППЭ

Защита расстоянием - мощность излучения снижается пропорцио-нально квадрату расстояния от источника

Уменьшение мощности излучения - выбор рационального режима излучателя

Экранирование источников излучения, для чего используются ме-таллические экраны и токопроводящие покрытия

Экранирование рабочих мест - применяется при невозможности эффективной защиты другими способами.

4. Инфракрасное излучение

У инфракрасного (ИК) излучения наиболее интенсивное биологическое воздействие оказывает коротковолновая область. Оно обладает наибольшей энергией фотона, способно глубоко проникать в ткани организма. При этом наблюдается нагрев и интенсивное поглощение излучения водой, содержащей-ся в тканях. Наиболее поражаемые ИК-излучением органы у человека - кожный покров и органы зрения. Возможны ожоги и усиление пигментации кожи (эри-темия - покраснение). К острым поражениям органов зрения относятся ожог конъюктивы, возможна катаракта. ИК-излучение воздействует также на обмен-ные процессы в миокарде, водно-электролитический баланс в организме, со-стояние верхних дыхательных путей (ларингит, ринит), возможен и мутагенный эффект.

Нормирования ИК-излучения включает соблюдение гигиенических норма-тивов облучения, применение теплозащитных экранов и индивидуальной защи-ты - теплозащитных костюмов, масок, очков. При обслуживании ИК-установок, применяемых в животноводстве для местного обогрева (молодняка скота) типа ОИ-1, ОТ-1, ИКУФ-1, необходимо применение защитных очков.

5. Световое излучение.

Световое излучение - диапазон электромагнитных колебаний длиной 380-700 нм. Излучения видимого диапазона при высоких уровнях может пред-ставлять опасность для кожных покровов и органов зрения.

Широкополосное световое излучение больших энергий характеризуется световым импульсом, действие которого на организм приводит к ожогам от-крытых участков тела, временному ослеплению или ожогам сетчатки глаз. Ми-нимальная ожоговая доза для светового излучения составляет 3-8 Дж/см2.с, за время мигательного рефлекса - 0,15 с. Сетчатка может быть повреждена при длительном воздействии света умеренной интенсивности, в особенности при воздействии голубой части спектра 400-550 нм, оказывающей на сетчатку глаза специфическое фотохимическое воздействие.

6. Ультрафиолетовое излучение.

Ультрафиолетовое излучение имеет волновой диапазон 100-380 нм, кото-рый по биологическому действию разделяют на 3 области:

УФА .... 315-380 нм - оказывает слабое биологическое действие

УФВ .... 280-315 нм - оказывает сильное биологическое действие, вызыва-ет загар и синтез витамина Б.

УФС .... 100-280 нм - вызывает деструкцию тканевых белков и липидов, обладает бактерицидным действием.

УФ облучение усиливает окислительные процессы в организме и способ-ствует более активному выведению тяжелых металлов и других токсикантов. Оптимальные дозы УФ активируют деятельности сердца, обмен веществ, по-вышают активность ферментов, улучшают кроветворение.

УФ облучение от облучателей типа ЭО-1-30, ОБН-150, УГД-3 может вы-зывать ожоги открытых участков кожи, а также острые поражения глаз - элек-троофтальмию. Роговица глаз наиболее чувствительна к УФС, наибольшее воз-действие на хрусталик оказывает излучение в диапазоне 295-320 нм.

УФ облучение приводит к старению кожи, возможно развитие злокачест-венных новообразований. При этом отмечается кумуляция биологических эф-фектов. В комбинации с химическими веществами УФ приводят к сенсибили-зации - повышении чувствительности организма к свету с развитием фотоал-лергических реакций.

Гигиеническое нормирование УФ-излучения осуществляется по СН 4557-88, которые устанавливают допустимые плотности потока излучения в зависи-мости от длины волны при условии защиты органов зрения и кожи.

Допустимая интенсивность УФ-облучения работающих при незащищен-ных участках кожи не более 0,2 м (лицо, руки). Общая продолжительность воздействия 50% рабочей смены не должно превышать 10 Вт/ м2 для облучения УФА и 0,01 Вт/ м2 для облучения УФВ. Излучение в области УФС не допуска-ется.

При использовании спецодежды и средств защиты лица и рук не пропус-кающих излучение (кожа, ткани с пленочным покрытием) допустимая интен-сивность облучения в области УВФ + УФС (200-315 нм) не должна превышать 1 Вт/м2.

7. Лазерное излучение.

Лазерное излучение - электромагнитные волны в диапазоне 0,01-1000 мкм (от рентгеновского до радиодиапазона). Отличие лазерного от других ви-дов излучение заключается в монохроматичности, когерентности и высокой степени направленности. При оценке биологического действия различается прямое, отраженное и рассеянное излучение. Эффекты воздействия определя-ются взаимодействием лазерного излучения с тканями (тепловой, фотохимиче-ский и ударно-акустический эффекты). Эффект воздействия зависит от длины волны излучения, длительности импульса, частоты следования импульсов, пло-щади облучаемого участка. Лазерное излучение с длиной волны 380-1400 нм представляет наибольшую опасность для сетчатки глаза, повреждение кожи может быть вызвано излучением с длиной волны в диапазоне 180-100000 нм.

При нормировании лазерного излучения устанавливают предельно допус-тимые уровни для двух условий облучения - однократного и хронического для 3-х диапазонов волн: 180-380 нм, 380 - 1400 нм и 1400 - 100000 нм. Нормируе-мым параметром, является энергетическая экспозиция Н и облученность Е. Нормируется также энергия и мощность Р излучения. Предельно допустимые уровни лазерного излучения различаются от длины волны, длительности оди-ночного импульса, частоты импульсов. Установлены различные ПДУ при воз-действии на кожу и глаза.

В зависимости от выходной мощности и ПДУ при однократном воздейст-вии генерируемого излучения по степени опасности лазеры разделяют на 4 класса:

полностью безопасные лазеры;

опасные для кожи и глаз только коллимированным (заключенным в ограниченном телесном угле) пучком;

опасные не только коллимированным, но и диффузно отраженным из-лучением на расстоянии 10 см от отражающих поверхностей (для глаз), на кожу это не действует;

опасные диффузно отраженным излучением для глаз и кожи на рас-стоянии 10 см от отражающей поверхности.

Тема 9. Освещение производственных помещений и рабочих мест

Влияние света на жизнедеятельность.

Санитарно-гигиенические требования к освещению производствен-ных помещений.

Основные светотехнические понятия и величины.

Нормирование естественного освещения.

5. Источники и методы расчета искусственной освещенности.

1. Влияние света на жизнедеятельность

Свет является необходимым фактором жизнедеятельности организма че-ловека и животных. Освещенность - это важнейший элемент комфортных ус-ловий труда персонала и содержания животных. Рациональное освещение про-изводственных помещений снижает утомляемость, способствует повышению производительности труда, оказъюает положительное психологическое воздей-ствие, повышает безопасность труда.

Лучистая энергия Солнца оказывает благотворное воздействие на фото-химические процессы в организме животных. Экспериментально установлено, что свет ускоряет развитие животных, является активным регулятором многих биологических процессов.

2 Санитарно-гигиенические требования к освещению

производствен-ных помещений.

Освещенность на рабочем месте должна соответствовать следующим ги-гиеническим требованиям:

Освещенность должна соответствовать нормам, установленным для каждого разряда работ.

На рабочей поверхности должны отсутствовать резкие и движу-щиеся тени.

В поле зрения не должно быть прямой и отраженной блесткости -повышенной яркости светящихся поверхностей.

4. Величина освещенности должна быть постоянной во времени.
Несоблюдение этих требований приводят к быстрому утомлению, сниже-
нию работоспособности, увеличению травматизма.

3. основные светотехнические понятия и величины.

Зрительные ощущения вызываются световыми волнами длиной 380-700 нм. Более короткие волны - УФ (100-380 нм) и более длинные - ИК (свыше 700 нм) зрительных ощущений не вызывают. Основными светотехническими величинами являются:

Световой поток Ф - мощность лучистой энергии, оцениваемой по свето-вому ощущению, воспринимаемому глазом. Единица светового потока - люмен (лм).

Сила света - световой поток, отнесенный к телесному углу со, она отра-жает пространственную плотность светового потока:

I = Ф/ш = лм / ср (стерадиан) Единица силы света - кандела (кд) - свеча. 1 кандела - сила света точечно-го источника, испускающего световой поток в 1 лм, равномерно распределен-ный внутри телесного угла в 1 ср. Кандела - светотехническая единица, уста-навливаемая по эталону.

3 Освещенность В - плотность светового потока на освещаемой поверхности:

Е = Ф/3; где: ^'. - площадь поверхности, м

Ф - световой поток, лм. Р)диница освещенности -- люкс (лк), он равен световому потоку 1 лм, рав-номерно распределенному на площади в 1 м2.

Освещенность не зависит от свойств освещаемой поверхности (цвета, формы). Одинаковый световой поток создает равную освещенность на темных и светлых поверхностях. Освещенность 1 лк - очень слабая, в лунную ночь ос-вещенность поверхности земли 0,2 лк, а в солнечный день - до 100000 лк. Ос-новное значение для зрительного восприятия имеет не освещенность поверхно-сти, а световой поток, отраженный от этой поверхности и попадающий на зра-чок, т.к. уровень ощущения света глазом зависит от плотности светового потока на сетчатке глаза. В этой связи введено понятие яркости. Именно различие в яркости предметов позволяет человеку их различать. 4. Единица измерения яркости - нит (нт)

1 нт =1 кд/м^

4 Нормирование естественного освещения.

Рабочие места на производстве могут освещаться естественным и искус-ственным светом. Часто прибегают к комбинированному освещению, при кото-ром недостаточное по нормам естественное освещение дополняется искусст-венным.

Естественное освещение создается прямыми солнечными лучами или рассеянным светом небосвода. Естественное освещение может быть боковым (через окна), верхним (через световые фонари) и смешанным (боковое в соче-тании с верхним). Боковое освещение создает дополнительную неравномер-ность в освещении участков, удаленных от окон и расположенных рядом с ни-ми. Равномерное освещение помещений обеспечивается верхним и особенно совмещенным естественным освещением.

Нормирование естественного освещения осуществляется по коэффициен-ту естественной освещенности Ке.о., который определяется по формуле:

Ке.о. = (Ев/Ен) * 100%

где: Ев - освещенность данной точки внутри помещения.

Ен - освещенность снаружи помещения под открытым небом. Гигиенические нормы естественной освещенности установлены в зависи-мости от разряда зрительной работы (наименьшего размера объекта различе-ния).

Освещенность сельскохозяйственных объектов нормируется отраслевыми нормами освещения производственных зданий и сооружений. Нормами установлено 8 разрядов для зрительных работ. В основу выбора Ке.о. для первых 7 разрядов положен размер объекта различия. Расчет естественного освещения заключается в определении площади световых проемов (окон и фонарей) в со-ответствии с нормируемым значением Ке.о.

5. Источники и методы расчета искусственной освещенности

Искусственное освещение используется при недостаточном естественном освещении, а также при освещении рабочих поверхностей в темное время су-ток. Оно может быть общим и местным.

Общее освещение предназначено для освещения всего помещения и де-лится на равномерное и локализованное. Равномерное освещение создает усло-вия для выполнения работы в любом месте освещаемого пространства. Локали-зованное - предусматривает размещение светильников но местам расположе-ния оборудования. Местное освещение используют для освещения только ра-бочих поверхностей, его выполняют стационарным и переносным

Искусственное освещение нормируют по минимальной освещенности ра-бочих поверхностей в зависимости от характеристики зрительной работы. Наи-большая нормируемая освещенность составляет 5000 лк (разряд 1 А), наимень-шая - 30 лк. Уровни нормированной освещенности повышаются в условиях, за-трудняющих зрительную работу или увеличивающих опасность травматизма.

Нормы регламентируют также показатель ослепленности Р%, который оценивает слепящее действие осветительной установки. Для светильника обще-го освещения в зависимости от разряда зрительных работ он лежит в пределах 20-60%, а при периодическом пребывании людей в помещении- 60-80%.

Источники искусственного освещения - лампы накаливания и газоразряд-ные лампы. Лампы накаливания дают непрерывный спектр излучения с преоб-ладанием желто-красных лучей по сравнению с естественным светом. Источ-никами света в них является раскаленная вольфрамовая спираль. Недостаток ламп накаливания - небольшой срок службы (до 2,5 тыс.ч) и низкая световая отдача - 7-19 лм/Вт.

Газоразрядные лампы бывают низкого (люминесцентные) и высокого дав-ления. Люминесцентная лампа - это стеклянная трубка, внутренняя поверх-ность которой покрыта слоем люминофора. Колба лампы наполнена неболь-шим количеством паров ртути (сейчас применяется Иа) - 30-80 мг, и инертным газом - обычно аргоном под давлением 400 Па. Люминесцентные лампы в за-висимости от состава люминофора различаются цветностью - лампы дневного света ЛД и белого света ЛБ. Газоразрядные лампы имеют срок службы до 5тыс.ч, световую отдачу 40-65 лм/Вт, кроме того спектр их излучения ближе к естественному свету. Их недостатком является пульсация светового потока, шум дросселей, сложность системы включения, их нельзя использовать при низких температурах, они чувствительны к снижению напряжения в сети.

Тема 10. Меры безопасности при работе с токсичными и агрессивными

Веществами

Определение токсичности и классификация токсичных веществ.

Правила безопасного хранения токсичных веществ.

Правила безопасности при работе с токсичными и агрессивными

веществами.

Средства индивидуальной защиты.

1. Определение токсичности и классификация токсичных веществ

В сельскохозяйственном производстве широко используются химические вещества, которые необходимы в современных технологиях, но представляю-щие опасность для жизни и здоровья работающих. Для предотвращения острых и хронических отравлений необходимо знать класс опасности вещества, осо-бенности его проникновения и действия на организм. Опасность отравления за-висит также и от условий работы, методов применения и аппаратуры.

Токсический эффект может проявляться функциональными и структурны-ми (иатоморфологическими) изменениями или вести к гибели организма. При этом для оценки порога однократного вредного действия используется ПДК максимально-разовая, а постоянного воздействга - ПДК среднесуточная. При отсутствии нормативов на некоторые химические вещества может использо-ваться временный санитарно-гигиенический норматив - ориентировочный бе-зопасный уровень воздействия (ОБУВ). В случае превышения уровня воздейст-вия токсичных веществ, в организме возникают изменения биологических по-казателей, выходящие за пределы приспособительных реакций.

Для оценки степени токсичности химических веществ используется нор-матив летальной дозы ЛД5о - концентрация мг/м"1 вещества, вызывающая ги-бель 50% особей вида - индикатора при 4-часовом ингаляционном пути посту-пления в организм.

По степени токсичности все химические вещества подразделяются на 4 класса опасности:

Чрезвычайно опасные (арсенид Са, тиофос, ал.дрин).

Высокоопасные (бромистый метил, дихлорэтан, зоокумарин, кры-сид).

Умеренно опасные (формалин, бутифос, карбофос, хлорофос).

Малоопасные (минеральные удобрения, бордосская жидкость, пре-параты серы).

Применяемые в сельскохозяйственном производстве пестициды в зависимости от назначения делят на:

Инсектициды - средства борьбы с насекомыми.

Зооциды - средства борьбы с грызунами.

Фунгициды - средства борьбы с грибкоьыми заболеваниями.

Страницы: 1, 2, 3


© 2008
Полное или частичном использовании материалов
запрещено.